早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图①,半圆O的直径AB=6,AM和BN是它的两条切线,CP与半圆O相切于点P,并于AM,BN分别相交于C,D两点.(1)请直接写出∠COD的度数;(2)求AC•BD的值;(3)如图②,连接OP并延长交AM于点Q

题目详情
如图①,半圆O的直径AB=6,AM和BN是它的两条切线,CP与半圆O相切于点P,并于AM,BN分别相交于C,D两点.
(1)请直接写出∠COD的度数;
(2)求AC•BD的值;
(3)如图②,连接OP并延长交AM于点Q,连接DQ,试判断△PQD能否与△ACO相似?若能相似,请求AC:BD的值;若不能相似,请说明理由.
作业帮
▼优质解答
答案和解析
(1)∠COD=90°.
理由:如图①中,∵AB是直径,AM、BN是切线,
∴AM⊥AB,BN⊥AB,
∴AM∥BN,
∵CA、CP是切线,
∴∠ACO=∠OCP,同理∠ODP=∠ODB,作业帮
∵∠ACD+∠BDC=180°,
∴2∠OCD+2∠ODC=180°,
∴∠OCD+∠ODC=90°,
∴∠COD=90°.

(2)如图①中,∵AB是直径,AM、BN是切线,
∴∠A=∠B=90°,
∴∠ACO+∠AOC=90°,
∵∠COD=90°,
∴∠BOD+∠AOC=90°,
∴∠ACO=∠BOD,
∴RT△AOC∽RT△BDO,
AC
BO
=
AO
BD

即AC•BD=AO•BO,
∵AB=6,
∴AO=BO=3,
∴AC•BD=9.

(3)△PQD能与△ACQ相似.
∵CA、CP是 O切线,
∴AC=CP,∠1=∠2,
∵DB、DP是 O切线,
∴DB=DP,∠B=∠OPD=90°,OD=OD,
∴RT△ODB≌RT△ODP,
∴∠3=∠4,
①如图②中,当△PQD∽△ACO时,∠5=∠1,
∵∠ACO=∠BOD,即∠1=∠3,
∴∠5=∠4,
∴DQ=DO,
∴∠PDO=∠PDQ,
∴△DCQ≌△DCO,
∴∠DCQ=∠2,
∵∠1+∠2+∠DCQ=180°,
∴∠1=60°=∠3,
在RT△ACO,RT△BDO中,分别求得AC=
3
,BD=3
3

∴AC:BD=1:3.作业帮
②如图②中,当△PQD∽△AOC时,∠6=∠1,
∵∠2=∠1,
∴∠6=∠2,
∴CO∥QD,
∴∠1=∠CQD,
∴∠6=∠CQD,
∴CQ=CD,
∵S△CDQ=
1
2
•CD•PQ=
1
2
•CQ•AB,
∴PQ=AB=6,
∵CO∥QD,
PC
PD
=
PO
PQ
,即
AC
BD
=
3
6

∴AC:BD=1:2