早教吧作业答案频道 -->其他-->
如图1,在Rt△ACB中,∠BAC=90°,AB=AC,分别过B、C两点作过点A的直线l的垂线,垂足为D、E;(1)如图1,当D、E两点在直线BC的同侧时,猜想,BD、CE、DE三条线段有怎样的数量关系?并说明理由
题目详情
如图1,在Rt△ACB中,∠BAC=90°,AB=AC,分别过B、C两点作过点A的直线l的垂线,垂足为D、E;
(1)如图1,当D、E两点在直线BC的同侧时,猜想,BD、CE、DE三条线段有怎样的数量关系?并说明理由.
(2)如图2,当D、E两点在直线BC的两侧时,BD、CE、DE三条线段的数量关系为______.
(3)如图2,若直线AD被截成的线段AE、EM、MD的长度分别是a,b,c,又S△ABM=S1,S△ACM=S2,求S2-S1的值.(用含有a,b,c的代数式表示)
(4)如图3,∠BAC=90°,AB=22,AC=28.点P从B点出发沿B→A→C路径向终点C运动;点Q从C点出发沿C→A→B路径向终点B运动.点P和Q分别以每秒2和3个单位的速度同时开始运动,只要有一点到达相应的终点时两点同时停止运动;在运动过程中,分别过P和Q作PF⊥l于F,QG⊥l于G.问:点P运动多少秒时,△PFA与△QAG全等?(直接写出结果即可)
(1)如图1,当D、E两点在直线BC的同侧时,猜想,BD、CE、DE三条线段有怎样的数量关系?并说明理由.
(2)如图2,当D、E两点在直线BC的两侧时,BD、CE、DE三条线段的数量关系为______.
(3)如图2,若直线AD被截成的线段AE、EM、MD的长度分别是a,b,c,又S△ABM=S1,S△ACM=S2,求S2-S1的值.(用含有a,b,c的代数式表示)
(4)如图3,∠BAC=90°,AB=22,AC=28.点P从B点出发沿B→A→C路径向终点C运动;点Q从C点出发沿C→A→B路径向终点B运动.点P和Q分别以每秒2和3个单位的速度同时开始运动,只要有一点到达相应的终点时两点同时停止运动;在运动过程中,分别过P和Q作PF⊥l于F,QG⊥l于G.问:点P运动多少秒时,△PFA与△QAG全等?(直接写出结果即可)
▼优质解答
答案和解析
(1)∵在Rt△ABC中,∠BAC=90°,∠ADB=∠AEC=90°
∴∠BAD+∠EAC=90°,∠BAD+∠B=90°
∴∠EAC=∠B
∵AB=AC
∴△ABD≌△ACE(AAS)
∴AD=CE,BD=AE
∴DE=AD+AE=CE+BD.
(2)CE=DE+BD.理由如下:
∵BD⊥AE,CE⊥AE,
∴∠ADB=∠AEC=90°,
∴∠ABD+∠BAD=90°
∵∠BAC=90°,
∴∠BAD+∠EAC=90°,
∴∠ABD=∠EAC,
在△ABD和△ACE中
∵
,
∴△ABD≌△ACE(AAS),
∴BD=AE,AD=CE,
∵AD=AE+DE,
∴AD=BD+DE.
∴CE=BD+DE;
(3)∵AE、EM、MD的长度分别是a,b,c,BD=AE,AD=CE,
∴BD=AE=a,CE=AD=a+b+c
又∵S△ABM=S1,S△ACM=S2,
∴S1=
AM•BD=
a(a+b),S2=
AM•CE=
(a+b)(a+b+c),
∴S2-S1=
(a+b)(a+b+c)-
a(a+b)=
(a+b)(b+c)=
ab+
ac+
bc+
b2;
(4)①当0≤t<
时,点P在AB上,点Q在AC上,
此时有BF=2t,CG=3t,AB=22,AC=28.
当PA=QA即22-2t=28-3t,也即t=6时,
∵PF⊥l,QG⊥l,∠BAC=90°,
∴∠PFA=∠QGA=∠BAC=90°.
∴∠PAF=90°-∠GAQ=∠AQG.
在△PFA和△QAG中,
∴∠BAD+∠EAC=90°,∠BAD+∠B=90°
∴∠EAC=∠B
∵AB=AC
∴△ABD≌△ACE(AAS)
∴AD=CE,BD=AE
∴DE=AD+AE=CE+BD.
(2)CE=DE+BD.理由如下:
∵BD⊥AE,CE⊥AE,
∴∠ADB=∠AEC=90°,
∴∠ABD+∠BAD=90°
∵∠BAC=90°,
∴∠BAD+∠EAC=90°,
∴∠ABD=∠EAC,
在△ABD和△ACE中
∵
|
∴△ABD≌△ACE(AAS),
∴BD=AE,AD=CE,
∵AD=AE+DE,
∴AD=BD+DE.
∴CE=BD+DE;
(3)∵AE、EM、MD的长度分别是a,b,c,BD=AE,AD=CE,
∴BD=AE=a,CE=AD=a+b+c
又∵S△ABM=S1,S△ACM=S2,
∴S1=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
∴S2-S1=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
(4)①当0≤t<
28 |
3 |
此时有BF=2t,CG=3t,AB=22,AC=28.
当PA=QA即22-2t=28-3t,也即t=6时,
∵PF⊥l,QG⊥l,∠BAC=90°,
∴∠PFA=∠QGA=∠BAC=90°.
∴∠PAF=90°-∠GAQ=∠AQG.
在△PFA和△QAG中,
|
看了 如图1,在Rt△ACB中,∠...的网友还看了以下:
空间平行关系的判断与证明如图,四边形ABCD为距形,BC垂直平面ABE,F为CE上的点,且BE垂直 2020-05-13 …
空间垂直关系的判断与证明如图,四边形ABCD为距形,BC垂直平面ABE,F为CE上的点,且BE垂直 2020-05-13 …
如图,四边形ABCD为矩形,AD垂直于平面ABE,AE=EB=BC=2,F为CE上的点,且BF垂直 2020-05-15 …
正方形的判定C、D在线段AB上,CE垂直于AB,CE=DB,CR//AE,且过D点和B点作垂直于A 2020-06-16 …
已知在三角形ABC中,AC=BC,∠CAB=∠CBA=45°,CD是∠ACB的平分线,点E是AB上 2020-07-17 …
一道中考几何题求证.点B是线段AC的中点,点D是线段CE的中点,且四边形BCGF和CDHN都是正方 2020-07-20 …
如图已知ad平行于bc,AB垂直于BC,AB=3,AD=2,点P是线段AB上的一个动点,连接PD, 2020-07-25 …
如图,已知四边形ABCD为平行四边形,线段CE垂直对角线AC,连接AE,点F为AE中点,连接DF并 2020-08-02 …
如图,在正方形ABCD中,AB=1,点E在AB延长线上,联结CE,DE,DE交边BC于点F,设BE= 2020-12-07 …
利用网格画图:(1)过点C画AB的平行线CD;(2)过点C画AB的垂线,垂足为E;(3)线段CE的长 2020-12-12 …