早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知抛物线y=-x2+bx+3与x轴相交于点A和点B(点A在点B的左侧),与y轴交于点C,且OB=OC,点D是抛物线的顶点,直线AC和BD交于点E.(1)求点D的坐标;(2)联结CD、BC,求∠DBC余切值;(3

题目详情
如图,已知抛物线y=-x2+bx+3与x轴相交于点A和点B(点A在点B的左侧),与y轴交于点C,且OB=OC,点D是抛物线的顶点,直线AC和BD交于点E.
作业帮
(1)求点D的坐标;
(2)联结CD、BC,求∠DBC余切值;
(3)设点M在线段CA延长线,如果△EBM和△ABC相似,求点M的坐标.
▼优质解答
答案和解析
(1)∵已知抛物线y=-x2+bx+3与y轴交于点C,
∴点C的坐标为:(0,3),作业帮
∵OB=OC,
∴点B的坐标为:(3,0),
∴-9+3b+3=0,
解得,b=2,
∴抛物线的解析式为:y=-x2+2x+3,
y=-x2+2x+3=-(x-1)2+4,
∴顶点D的坐标为(1,4);
(2)如图1,作DH⊥y轴于H,
则CH=DH=1,
∴∠HCD=∠HDC=45°,
∵OB=OC,作业帮
∴∠OCB=∠OBC=45°,
∴∠DCB=90°,
∴cot∠DBC=
BC
DC
=
3
2
2
=3;
(3)-x2+2x+3=0,
解得,x1=-1,x2=3,
∴点A的坐标为:(-1,0),
OA
OC
=
1
3
,又
DC
BC
=
1
3

OA
OC
=
DC
BC

∴Rt△AOC∽Rt△DCB,
∴∠ACO=∠DBC,
∵∠ACB=∠ACO+45°=∠DBC+∠E,
∴∠E=45°,
∵△EBM和△ABC相似,∠E=∠ABC=45°,
∴∠ACB=∠BME,
∴BM=BC,
设直线CA的解析式为:y=kx+b,
-k+b=0
b=3

解得,
k=-3
b=3

则直线CA的解析式为:y=3x+3,
设点M的坐标为(x,3x+3),
则(x-3)2+(3x+3)2=18,
解得,x1=0(舍去),x2=-
6
5

x2=-
6
5
时,y=-
3
5

∴点M的坐标为(-
6
5
,-
作业帮用户 2017-11-13
我是二维码 扫描下载二维码