早教吧作业答案频道 -->其他-->
关于三等分点在解析几何中的运用已知双曲线x^2-y^2=1(x>0),又已知射线l1:y=x(x》0)l2:y=-x(x》0)一直线过点(0,2)交l1,l2于R,S交双曲线于P,Q且P,Q为线段R,S的两个三等分点问:求该直线方程注:看过
题目详情
关于三等分点在解析几何中的运用
已知双曲线x^2-y^2=1(x>0),又已知射线l1:y=x(x》0) l2:y=-x(x》0)
一直线过点(0,2)交l1,l2于R,S交双曲线于P,Q
且P,Q为线段R,S的两个三等分点
问:求该直线方程
注:看过有人问过这个题了,不过解答都省略了关于三等分点那个步骤的解答,主要就是不知道3等分点该如何运用,
已知双曲线x^2-y^2=1(x>0),又已知射线l1:y=x(x》0) l2:y=-x(x》0)
一直线过点(0,2)交l1,l2于R,S交双曲线于P,Q
且P,Q为线段R,S的两个三等分点
问:求该直线方程
注:看过有人问过这个题了,不过解答都省略了关于三等分点那个步骤的解答,主要就是不知道3等分点该如何运用,
▼优质解答
答案和解析
设A点坐标为(Xa,Ya),B点坐标为(Xb,Yb).
如果AB线段的两个三等分点为C、D,即AC/CB=1/2,AD/DB=2.
那么,Xc=Xa+1/3(Xb-Xa)=2/3Xa+1/3Xb
同理,Xd=Xa+2/3(Xb-Xa)=1/3Xa+2/3Xb
C、D的y值得出办法与上相同.
公式如下,若一点K分线段AB的比例为z,即AQ/QB=z .
那么,Xk=Xa+[z/(z+1)]*(Xb -Xa)=[1/(z+1)]*Xa+[z/(z+1)]*Xb
Yk=Ya+[z/(z+1)]*(Yb -Ya)=[1/(z+1)]*Ya+[z/(z+1)]*Yb
如果AB线段的两个三等分点为C、D,即AC/CB=1/2,AD/DB=2.
那么,Xc=Xa+1/3(Xb-Xa)=2/3Xa+1/3Xb
同理,Xd=Xa+2/3(Xb-Xa)=1/3Xa+2/3Xb
C、D的y值得出办法与上相同.
公式如下,若一点K分线段AB的比例为z,即AQ/QB=z .
那么,Xk=Xa+[z/(z+1)]*(Xb -Xa)=[1/(z+1)]*Xa+[z/(z+1)]*Xb
Yk=Ya+[z/(z+1)]*(Yb -Ya)=[1/(z+1)]*Ya+[z/(z+1)]*Yb
看了 关于三等分点在解析几何中的运...的网友还看了以下:
三线穿越白令海峡,其中不属于三线的是()A、东西半球的分界线B、国际日期变更线C、亚洲与北美洲的分 2020-04-23 …
如图已知点abcde在同一直线上,且AC等于BD,E是线段BC的中点.(1)点e是如图已知点abc 2020-06-15 …
在等腰△ABC中,(1)如图1,若△ABC为等边三角形,D为线段BC中点,线段AD关于直线AB的对 2020-07-16 …
三线穿越白令海峡,其中不属于三线的是()A.东西半球的分界线B.国际日期变更线C.亚洲与北美洲的分 2020-07-21 …
一个关于中位线的问题我们知道,在一个三角形中,若连结任意两边中点,则得到的线段与三角形的另一边平行 2020-08-01 …
已知三边求作三角形,用到的基本作图是()。A.作角等于已知角B.作已知直线的垂线C.作线段等于已知 2020-08-02 …
(2012•滨州)我们知道“连接三角形两边中点的线段叫三角形的中位线”,“三角形的中位线平行于三角形 2020-11-13 …
命题:在三角形中,顶点与对边中点连线所得三线段交于一点,且分线段长度比为2:1,类比可得在四面体中, 2020-11-29 …
命题:三角形中,顶点与对边中点连线所得三线段交于一点,且分线段长度比为2:1,类比可得四面体中,顶点 2020-11-29 …
已知两条线段的和为25km,长线段的2倍正好等于短线段的3倍,求长线段于短线短的差 2020-12-05 …