早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(理)如果f(x)在某个区间I内满足:对任意的x1、x2∈I都有[f(x1)+f(x2)]≥f()则称f(x)在I上为下凸函数.已知函数f(x)=-alnx.(1)证明当a>0时f(x)在(0+∞)上为下凸函数;(2)

题目详情
(理)如果f(x)在某个区间I内满足:

对任意的x 1 、x 2 ∈I 都有 [f(x 1 )+f(x 2 )]≥f( ) 则称f(x)在I上为下凸函数.

已知函数f(x)= -alnx.

(1)证明当a>0时 f(x)在(0 +∞)上为下凸函数;

(2)若f′(x)为f(x)的导函数 且x∈[ 2]时 |f′(x)|<1 求实数a的取值范围.

(文)如果f(x)在某个区间I内满足:

对任意的x 1 、x 2 ∈I 都有 [f(x 1 )+f(x 2 )]≥f( ) 则称f(x)在I上为下凸函数 已知函数f(x)=ax 2 +x.

(1)证明当a>0时 f(x)在R上为下凸函数;

(2)若x∈(0 1)时 |f(x)|≤1 求实数a的取值范围.

▼优质解答
答案和解析

(理)(1)证明:任取x 1 、x 2 ∈(0 +∞)

[f(x 1 )+f(x 2 )]

= -alnx 1 + -alnx 2

= -aln                                                          

                                          

∵x 1 2 +x 2 2 ≥2x 1 x 2 ∴(x 1 +x 2 ) 2 ≥4x 1 x 2 .

又x 1 >0 x 2 >0 ∴ .                                            

a>0

∴-aln ≥-aln                                                   

[f(x 1 )+f(x 2 )]≥f( ).                                              

∴f(x)为(0 +∞)上的下凸函数.

(2)f′(x)=                                                     

∵|f′(x)|<1 即| |<1

∴-(x+ )<a<x- .                                                        

∵x∈[ 2]时 |f′(x)|<1恒成立

∴a∈(-2 ).                                                            

(文)(1)证明:f(x 1 )+f(x 2 )-2f( )

=ax 1 2 +x 1 +ax 2 2 +x 2 -2[a( ) 2 -

=                                                            

∵a>0 ∴ [f(x 1 )+f(x 2 )]≥f( ).

∴当a>0时 f(x)为R上的下凸函数.                                         

(2)∵|f(x)|≤1

∴-1≤ax 2 +x≤1

≤a≤ .                                               &

作业帮用户 2017-03-27