早教吧作业答案频道 -->数学-->
试证明无论x取何实数时,代数式2x2+4x+7的值一定是正数.
题目详情
试证明无论x取何实数时,代数式2x2+4x+7的值一定是正数.
▼优质解答
答案和解析
原式=2(x2+2x)+7
=2(x2+2x+1-1)+7
=2[(x+1)2-1]+7
=2(x+1)2-2+7
=2(x+1)2+5.
∵(x+1)2≥0,
∴2(x+1)2≥0,
∴2(x+1)2+5≥5,
∴2(x+1)2+5>0,
∴无论x取何实数,代数式2x2+4x+7的值一定是正数.
=2(x2+2x+1-1)+7
=2[(x+1)2-1]+7
=2(x+1)2-2+7
=2(x+1)2+5.
∵(x+1)2≥0,
∴2(x+1)2≥0,
∴2(x+1)2+5≥5,
∴2(x+1)2+5>0,
∴无论x取何实数,代数式2x2+4x+7的值一定是正数.
看了 试证明无论x取何实数时,代数...的网友还看了以下:
代办证券账户的开户、挂失、销户时,证券公司应留存客户和代办人的有效身份证件或者其他身份证明文 2020-05-27 …
怎样证根5是无理数啊?我知道证明根2怎么证,但是证根5是无理数就没有头绪了.还有要是证明根18是无 2020-06-14 …
(x-199)^2+y^2=199^2的整数根我的提问忘记了,我知道有四组整数根,我想知道的是怎么 2020-07-01 …
求1+2+2^2+2^3+2^4+…+2^2014的值.设S=1+2+2^2+2^3+2^4+…+ 2020-07-09 …
已知a、b、c两两不等,且满足a^2+b^2+mab=b^2+c^2+mbc=c^2+a^2+mc 2020-07-20 …
xyz=1,x+y+z=2,x^2+y^2+z^2=3,求x,y,z我解:xy=1/z,x+y=2- 2020-10-31 …
观察下列各式然后回答问题:1-1/2^2=1/2*2/3,1-1/3^2+2/3*4/3,1-1/4 2020-11-01 …
已知a,b属于正实数a^2+b^2/2=1求y=a√(1+b^2)的最大值参考书上是用y^2=[a√ 2020-12-31 …
这些题怎么数学解1已知(x+m)^2(x^2-2x+3)+x(x+1)中不含x^2项求m的值2已知a 2020-12-31 …
y=sinx*(cosx+1)x属于R此函数求导为y'=cosx^2-sinx^2+1用t代换cos 2021-01-07 …