早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设定义在[-2,2]上的奇函数f(x)在区间[0,2]上单调递减,若f(m)+f(m-1)>0,求实数m的取值范围.

题目详情
设定义在[-2,2]上的奇函数f(x)在区间[0,2]上单调递减,若f(m)+f(m-1)>0,求实数m的取值范围.
▼优质解答
答案和解析
由f(m)+f(m-1)>0,移项得f(m)>-f(m-1),
∵f(x)是定义在[-2,2]上的奇函数
∴-f(m-1)=f(1-m),不等式化成f(1-m)<f(m).(4分)
又∵f(x)在[0,2]上为减函数,且f(x)在[-2,2]上为奇函数,
∴f(x)在[-2,2]上为减函数.(6分)
因此,
1−m>m
−2≤1−m≤2
−2≤m≤2
,解之得-1≤m<
1
2
(9分)
综上所述,可得m的取值范围为[-1,
1
2
).(12分)