早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设等差数列{an}满足sin2a4cos2a7-sin2a7cos2a4sin(a5+a6)=1,公差d∈(-1,0),当且仅当n=9时,数列{an}的前n项和Sn取得最大值,求该数列首项a1的取值范围()A.(7π6,4π3)B.[7π6,4π3]C.(4π3,3

题目详情

设等差数列{an}满足

sin2a4cos2a7-sin2a7cos2a4
sin(a5+a6)
=1,公差d∈(-1,0),当且仅当n=9时,数列{an}的前n项和Sn取得最大值,求该数列首项a1的取值范围(  )

A. (

6
3
)

B. [

6
3
]

C. (

3
2

D. f(x)

▼优质解答
答案和解析
∵等差数列{an}满足
sin2a4cos2a7-sin2a7cos2a4
sin(a5+a6)
=1,
∴(sina4cosa7-sina7cosa4)(sina4cosa7+sina7cosa4
=sin(a5+a6)=sin(a4+a7)=sina4cosa7+sina7cosa4
∴sina4cosa7-sina7cosa4=1,或sina4cosa7+sina7cosa4=0
即sin(a4-a7)=1,或sin(a4+a7)=0(舍)
当sin(a4-a7)=1时,
∵a4-a7=-3d∈(0,3),a4-a7=2kπ+
π
2
,k∈Z,
∴-3d=2kπ+
π
2
,d=-
π
6
-
2k
3
π.
∴d=-
π
6

∵Sn=na1+
n(n-1)d
2
=
d
2
n2+(a1-
d
2
)n,
且仅当n=9时,数列{an}的前n项和Sn取得最大值,
∴8.5<-
a1-
d
2
d
2
<9.5,
4
3
π<a1<
2

故选:C