早教吧作业答案频道 -->数学-->
设a(0,t)b(0,t+6)若圆m是三角形abc的内接园求三角形面积最大值与最小值ps:圆方程为(x-1设a(0,t)b(0,t+6)若圆m是三角形abc的内接园求三角形面积最大值与最小值ps:圆方程为(x-1
题目详情
设a(0,t)b(0,t+6)若圆m是三角形abc的内接园求三角形面积最大值与最小值 ps:圆方程为(x-1
设a(0,t)b(0,t+6)若圆m是三角形abc的内接园求三角形面积最大值与最小值 ps:圆方程为(x-1)2+y2=1
设a(0,t)b(0,t+6)若圆m是三角形abc的内接园求三角形面积最大值与最小值 ps:圆方程为(x-1)2+y2=1
▼优质解答
答案和解析
当C在X轴上时,内切(不是接)圆半径为1,ΔABC周长最小从而面积最小(SΔABC=1/2r(a+b+c)).
这时A(0,-3),B(0,3),设BC切⊙M于D,连接MD,根据切线长相等得BD=OB=3,
则RTΔOBC∽RTΔDMC,MD/OB=CD/OC=CM/BC,
∴(1+CM)=3CD,(3+CD)=3CM,
解得:CD=3/4,CM=5/4,∴OC=8/5,
SΔABC=1/2AB*OC=24/5.
当C在过B(或A)的X轴平行线上时,SΔABC最大.
这时,B(0,1),A(0,-5),设AC交X轴于E,AC切⊙M于F,连接MF,
则AO=AF=5,
过C作CG⊥X轴于G,CG=OB=1,∴RTΔEMF≌RTΔEGC,∴EF=EG,ME=CE,
∴BC=OG=1+2ME,
∵RTΔMFE∽RTΔABC,
MF/AB=ME/AC=EF/BC,
∴AC=6ME,BC=6EF,
5+EF+ME=6ME,1+ME+EF=6EF,
解得:EF=5/12,ME=13/12,
∴BC=OG=1+ME+EG=1+13/12+5/12=5/2,
∴SΔABC=1/2AB*BC=15/2.
这时A(0,-3),B(0,3),设BC切⊙M于D,连接MD,根据切线长相等得BD=OB=3,
则RTΔOBC∽RTΔDMC,MD/OB=CD/OC=CM/BC,
∴(1+CM)=3CD,(3+CD)=3CM,
解得:CD=3/4,CM=5/4,∴OC=8/5,
SΔABC=1/2AB*OC=24/5.
当C在过B(或A)的X轴平行线上时,SΔABC最大.
这时,B(0,1),A(0,-5),设AC交X轴于E,AC切⊙M于F,连接MF,
则AO=AF=5,
过C作CG⊥X轴于G,CG=OB=1,∴RTΔEMF≌RTΔEGC,∴EF=EG,ME=CE,
∴BC=OG=1+2ME,
∵RTΔMFE∽RTΔABC,
MF/AB=ME/AC=EF/BC,
∴AC=6ME,BC=6EF,
5+EF+ME=6ME,1+ME+EF=6EF,
解得:EF=5/12,ME=13/12,
∴BC=OG=1+ME+EG=1+13/12+5/12=5/2,
∴SΔABC=1/2AB*BC=15/2.
看了 设a(0,t)b(0,t+6...的网友还看了以下:
满族最隆重的礼节是?A:顶头礼B:贴面礼C:叩拜礼D:抱腰礼辽宁省内的最大河流辽河流经那?A:内蒙 2020-05-13 …
有一个三角形,三个内角不相等,其中最小的角45度.这个三角形是()A.直角三角形B.钝角三角形C. 2020-05-14 …
有A.B.C.D.E五箱苹果,各箱苹果的质量不等.如果把B箱苹果的一半放入A箱内,C箱苹果的三分之 2020-06-03 …
在三角形ABC中,三内角的三角关系式y=2+cosCcos(A-B)-cos²C(1)若任意交换A 2020-06-03 …
关于正弦定理的一道题~若钝角三角形三内角满足关系:A-B=B-C,且最大边长与最小边长的比值为m, 2020-06-03 …
问了不要笑一人骑自行车沿着一段下坡路下行,在第一秒内通过一米,在第二秒内通过三米,在第三秒内通过六 2020-06-15 …
一个三角形的三个内角度数各不相等,其中最小的角是51°,那么这个三角形是一个()A.锐角三角形B. 2020-07-17 …
一.若三角形ABC的三个内角满足sinA:sinB:sinC=5:11:13.则三角形.A一定是锐 2020-07-18 …
如图,已知三角形ABC内接于一圆,角A=57度,角B=66度,过点A、B、C作该圆的外切三角形A' 2020-08-03 …
解不等式1.不等式组x≤2,x+2>1的最小整数解为()2.不等式组x+3<0,x-4<0,x+5> 2020-11-20 …