早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2013•山东)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.(1)求数列{an}的通项公式;(2)设数列{bn}的前n项和为Tn且Tn+an+12n=λ(λ为常数).令cn=b2n(n∈N*)求数列{cn}的前n项和Rn.

题目详情
(2013•山东)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为TnTn+
an+1
2n
=λ(λ为常数).令cn=b2n(n∈N*)求数列{cn}的前n项和Rn
▼优质解答
答案和解析
(1)设等差数列{an}的首项为a1,公差为d,由a2n=2an+1,取n=1,得a2=2a1+1,即a1-d+1=0①
再由S4=4S2,得4a1+
4×3d
2
=4(a1+a1+d),即d=2a1
联立①、②得a1=1,d=2.
所以an=a1+(n-1)d=1+2(n-1)=2n-1;
(2)把an=2n-1代入Tn+
an+1
2n
=λ,得Tn+
2n
2n
=λ,则Tn=λ−
2n
2n

所以b1=T1=λ-1,
当n≥2时,bn=Tn−Tn−1=(λ−
2n
2n
)−(λ−
2(n−1)
2n−1
)=
n−2
2n−1

所以bn=
n−2
2n−1
cn=b2n=
2n−2
22n−1
n−1
4n−1

Rn=c1+c2+…+cn=0+
1
41
+
2
42
+…+
n−1
4n−1

1
4
Rn=
1
42
+
2
43
+…+
n−1
4n

③-④得:
3
4
Rn=
1
4
+
作业帮用户 2017-09-18
问题解析
(1)设出等差数列的首项和公差,由已知条件列关于首项和公差的方程组,解出首项和公差后可得数列{an}的通项公式;
(2)把{an}的通项公式代入Tn+
1
an+1
2n
=λ,求出当n≥2时的通项公式,然后由cn=b2n得数列{cn}的通项公式,最后利用错位相减法求其前n项和.
名师点评
本题考点:
等差数列的通项公式;数列的求和.
考点点评:
本题考查了等差数列的通项公式,考查了数列的求和,训练了错位相减法,考查了学生的计算能力,属中档题.
我是二维码 扫描下载二维码