早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知双曲线M:x2-y2b2=1(b>0)的左、右焦点分别为F1,F2,过点F1与双曲线的一条渐近线平行的直线与另一条渐近线交于点P,若点P在以原点为圆心,双曲线M的虚轴长为半径的圆内,则b2的取

题目详情

已知双曲线M:x2-

y2
b2
=1(b>0)的左、右焦点分别为F1,F2,过点F1与双曲线的一条渐近线平行的直线与另一条渐近线交于点P,若点P在以原点为圆心,双曲线M的虚轴长为半径的圆内,则b2的取值范围是(  )

A. (7+4

3
,+∞)

B. (7-4

3
,+∞)

C. (7-4

3
,7+4
3

D. (0,7-4

3
)∪(7+4
3
,+∞)

▼优质解答
答案和解析
过F1(-c,0)且与渐近线y=bx平行的直线为y=b(x+c),
与另外一条渐近线y=-bx联立得
y=b(x+c)
y=-bx
,得
x=-
c
2
y=
bc
2
,即P(-
c
2
bc
2
),
以原点为圆心,双曲线M的虚轴长为半径的圆的方程为x2+y2=4b2
∴(-
c
2
2+(
bc
2
2<4b2,即c2+b2c2<16b2
把c2=b2+1代入并整理得b4-14b2+1<0,
得7-4
3
<b2<7+4
3

即b2的取值范围是(7-4
3
,7+4
3
),
故选:C