早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知二次函数y=x2-2bx+b2+c的图象与直线y=1-x只有一个公共点,并且顶点在二次函数y=ax2(a≠0)的图象上,求a的取值范围.

题目详情
已知二次函数y=x2-2bx+b2+c的图象与直线y=1-x只有一个公共点,并且顶点在二次函数y=ax2(a≠0)的图象上,求a的取值范围.
▼优质解答
答案和解析
∵二次函数y=x2-2bx+b2+c①的图象与直线y=1-x②只有一个公共点,
∴由①②组成的方程组只有一组解,把②代入①,整理得,x2+(1-2b)x+b2+c-1=0,
∴△=0,即(1-2b)2-4(b2+c-1)=0,得4b+4c=5③,
又∵二次函数y=x2-2bx+b2+c的图象的顶点坐标为(b,c),而顶点在二次函数y=ax2(a≠0)的图象上,
∴c=ab2④,
由③④得,4ab2+4b-5=0,(a≠0)
∴△≥0,即16+4×4a×5≥0,解得a≥-
1
5

所以a的取值范围为a≥-
1
5
,且a≠0.