早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图在rt三角形abc中角c=90度bc=4ac=8点d在斜边ab上分别作de垂直acdf垂直bc垂足分别为e,f得四边形becf,设de=xdf=y(1)用含y的代数式表示ae2求y与x之间的函数关系史求x取直范围3设四边形decf的面积

题目详情
如图在rt三角形abc中角c=90度bc=4ac=8点d在斜边ab上分别作de垂直ac df垂直bc
垂足分别为e,f得四边形becf,设de=x df=y
(1)用含y的代数式表示ae
2 求y与x之间的函数关系史求x取直范围
3 设四边形decf的面积为s求s最大值
▼优质解答
答案和解析

⑴AE=8-y,
⑵DF∥AC,
∴⊿BDF∽⊿BAC,
∴y/8=﹙4-x﹚/4,
∴y=﹣2x+8﹙0<x<4﹚
⑶S=x·y=x·﹙﹣2x+8﹚,
即S=﹣2x²+8x=﹣2﹙x-2﹚²+8,
所以当x=2时,S有最大值8.