早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,求t的值.

题目详情
如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两
点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度
为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,求t的值.
作业帮
▼优质解答
答案和解析
作业帮 连接BD,
∵在菱形ABCD中,∠ADC=120°,
∴AD=AB,∠A=60°,∠ADB=
1
2
∠ADC=60°,
∴△ABD是等边三角形,
∴BD=AD,
∵若△DEF是等边三角形,则∠DEF=60°,DE=DF,
∴∠ADE=∠BDF,
在△ADE和△BDF中,
AD=BD
∠ADE=∠BDF
DE=DF

∴△ADE≌△BDF(SAS),
∴AE=BF,
∴当AE=BF时,△DEF是等边三角形,
∵E的速度为1cm/s,点F的速度为2cm/s,
∴AE=tcm,CF=2tcm,
则BF=BC-CF=4-2t(cm),
∴t=4-2t,
解得:t=
4
3