早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知△BAC,AB=AC,O为△ABC外心,D为⊙O上一点,BD与AC的交点为E,且BC2=AC•CE①求证:CD=CB;②若∠A=30°,且⊙O的半径为3+3,I为△BCD内心,求OI的长.

题目详情
如图,已知△BAC,AB=AC,O为△ABC外心,D为⊙O上一点,BD与AC的交点为E,且BC2=AC•CE
①求证:CD=CB;
②若∠A=30°,且⊙O的半径为3+
3
,I为△BCD内心,求OI的长.
▼优质解答
答案和解析
①证明:∵BC2=AC•CE,
BC
AC
=
CE
BC

又∵AB=AC,
∴∠BCE=∠ABC,
∴△BCE∽△ACB,
∴∠CBE=∠A,
∵∠A=∠D,
∴∠D=∠CBE,
∴CD=CB;

②连接OB、OC,
∵∠A=30°,
∴∠BOC=2∠A=2×30°=60°,
∵OB=OC,
∴△OBC是等边三角形,
∵CD=CB,I是△BCD的内心,
∴OC经过点I,
设OC与BD相交于点F,
则CF=BC×sin30°=
1
2
BC,
BF=BC•cos30°=
3
2
BC,
所以,BD=2BF=2×
3
2
BC=
3
BC,
设△BCD内切圆的半径为r,
则S△BCD=
1
2
BD•CF=
1
2
(BD+CD+BC)•r,
1
2
3
BC•
1
2
BC=
1
2
3
BC+BC+BC)•r,
解得r=
作业帮用户 2017-10-27
问题解析
①先求出
BC
AC
=
CE
BC
,然后求出△BCE和△ACB相似,根据相似三角形对应角相等可得∠A=∠CBE,再根据在同圆或等圆中,同弧所对的圆周角相等可得∠A=∠D,然后求出∠D=∠CBE,然后根据等角对等边即可得证;
②连接OB、OC,根据在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍求出∠BOC=60°,然后判定△OBC是等边三角形,再根据等腰三角形三线合一的性质以及三角形的内心的性质可得OC经过点I,设OC与BD相交于点F,然后求出CF,再根据I是三角形的内心,利用三角形的面积求出IF,然后求出CI,最后根据OI=OC-CI计算即可得解.
名师点评
本题考点:
圆的综合题.
考点点评:
本题是圆的综合题型,主要考查了相似三角形的判定与性质,等腰三角形的判定与性质,圆周角定理,等边三角形的判定与性质,三角形的内心的性质,(2)作辅助线构造出等边三角形并证明得到OC经过△BCD的内心I是解题的关键.
我是二维码 扫描下载二维码