早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设O为锐角△ABC的外心,R为△ABC的外接圆半径,AO,BO,CO的延长线分别交BC,CA,AB于点D,E,F.求证:1AD+1BE+1CF=2R.

题目详情
设O为锐角△ABC的外心,R为△ABC的外接圆半径,AO,BO,CO的延长线分别交BC,CA,AB于点D,E,F.求证:
1
AD
+
1
BE
+
1
CF
=
2
R
▼优质解答
答案和解析
作业帮证明:延长AD交 O于M,由于AD,BE,CF共点O,
OD
AD
=
S△OBC
S△ABC
OE
BE
=
S△OAC
S△BAC
OF
CF
=
S△OAB
S△CAB

OD
AD
+
OE
BE
+
OF
CF
=1…①;
OD
AD
=
R-DM
2R-DM
=1-
R
2R-DM
=1-
R
AD

同理有,
OE
BE
=1-
R
BE
OF
CF
=1-
R
CF

代入①得:(1-
R
AD
)+(1-
R
BE
)+(1-
R
CF
)=1…②,
R
AD
+
R
BE
+
R
CF
=2,
1
AD
+
1
BE
+
1
CF
=
2
R