早教吧 育儿知识 作业答案 考试题库 百科 知识分享

过顶点在原点、对称轴为y轴的抛物线E上的定点A(2,1)作斜率分别为k1、k2的直线,分别交抛物线E于B、C两点.(1)求抛物线E的标准方程和准线方程;(2)若k1+k2=k1k2,证明:直线BC恒过定

题目详情
过顶点在原点、对称轴为y轴的抛物线E上的定点A(2,1)作斜率分别为k1、k2的直线,分别交抛物线E于B、C两点.
(1)求抛物线E的标准方程和准线方程;
(2)若k1+k2=k1k2,证明:直线BC恒过定点.
▼优质解答
答案和解析
(1) 设抛物线的方程为x2=ay,则
代入A(2,1),可得a=4,
∴抛物线E的标准方程为x2=4y,准线方程为y=-1;
(2)证明:设B(x1,y1),C(x2,y2),则直线AB方程y=k1(x-2)+1,
AC方程y=k2(x-2)+1,
联立直线AB方程与抛物线方程,消去y,得x2-4k1x+8k1-4=0,
∴x1=4k1-2①
同理x2=4k2-2②
而BC直线方程为y-
1
4
x12=
x2+x1
4
(x-x1),③
∵k1+k2=k1k2
∴由①②③,整理得k1k2(x-2)-x-y-1=0.
由x-2=0且-x-y-1=0,得x=2,y=-3,故直线BC经过定点(2,-3).