早教吧作业答案频道 -->其他-->
高中圆锥曲线.已知A(x1,y1),B(x2,y2)是抛物线C:y^2=4x上的任意两点,点P(1,2)是抛物线C上定点,已知A(x1,y1),B(x2,y2)是抛物线C:y^2=4x上的任意两点,点P(1,2)是抛物线C上定点,直线PA和PB的斜率分别为k1,k2,
题目详情
高中圆锥曲线.已知A(x1,y1),B(x2,y2)是抛物线C:y^2=4x上的任意两点,点P(1,2)是抛物线C上定点,
已知A(x1,y1),B(x2,y2)是抛物线C:y^2=4x上的任意两点,点P(1,2)是抛物线C上定点,直线PA和PB的斜率分别为k1,k2,若K1K2=2求证:直线AB过定点.
记得有一种解法是把K1、K2用X1、X2表示出来,有两种表示方式.然后k1k2可以写成两个方程,联立,带入直线AB的方程求到定点.但是我忘了怎样用两种办法k1、k2,
已知A(x1,y1),B(x2,y2)是抛物线C:y^2=4x上的任意两点,点P(1,2)是抛物线C上定点,直线PA和PB的斜率分别为k1,k2,若K1K2=2求证:直线AB过定点.
记得有一种解法是把K1、K2用X1、X2表示出来,有两种表示方式.然后k1k2可以写成两个方程,联立,带入直线AB的方程求到定点.但是我忘了怎样用两种办法k1、k2,
▼优质解答
答案和解析
设直线PA的斜率为1/k1(这么设是为了计算方便)
直线PB的斜率为1/k2
根据题意k1k2=1/2
A(x1,y1),B(x2,y2)
那么PA:x-1=k1(y-2)
与抛物线C:y^2=4x联立
得到y^2-4k1y+8k1-4=0
根据韦达定理得到
y1+2=4k1
所以y1=4k1-2
x1=(2k1-1)^2
所以A((2k1-1)^2,4k1-2)
把k1换成k2
得到了B((2k2-1)^2,4k2-2)
所以KAB=1/(k1+k2-1)
写出AB的方程y-(4k1-2)=[x-(2k1-1)^2]/(k1+k2-1)
把k1k2=1/2带入,并整理后得到
(k1+k2-1)y=x-2k1-2k2
所以(k1+k2)(y+2)=x+y
只要令y+2=0
x+y=0
解得x=2,y=-2
所以恒过点(2,-2)
直线PB的斜率为1/k2
根据题意k1k2=1/2
A(x1,y1),B(x2,y2)
那么PA:x-1=k1(y-2)
与抛物线C:y^2=4x联立
得到y^2-4k1y+8k1-4=0
根据韦达定理得到
y1+2=4k1
所以y1=4k1-2
x1=(2k1-1)^2
所以A((2k1-1)^2,4k1-2)
把k1换成k2
得到了B((2k2-1)^2,4k2-2)
所以KAB=1/(k1+k2-1)
写出AB的方程y-(4k1-2)=[x-(2k1-1)^2]/(k1+k2-1)
把k1k2=1/2带入,并整理后得到
(k1+k2-1)y=x-2k1-2k2
所以(k1+k2)(y+2)=x+y
只要令y+2=0
x+y=0
解得x=2,y=-2
所以恒过点(2,-2)
看了 高中圆锥曲线.已知A(x1,...的网友还看了以下:
某社区居委会由主任1人、副主任1至2人、委员若干人,共5至9人组成。居委会正式候选人应当多于应选名 2020-04-06 …
椭圆方程是x^2/a^2+y^2/b^2=1(a>b>0),P、Q为椭圆上任意两点,且∠POQ=π 2020-05-16 …
IMO2009中的高等数学符号问题,n是一个正整数,设a[1],a[2],...,a[k](k≥2 2020-06-02 …
a为任意有理数,下列说法正确的是A、(a+1)^2的值总是正数B、a^2+1的值总是正数C、-(a 2020-06-12 …
已知a/(a^2+1)=1/2,求a^2/(a^4+1)的值由a/(a^2+1)=1/2,知a≠0 2020-06-14 …
1.计算(-3)^11+(-3)^10的结果是()A.-3B.-2×3^10C.-1D.-3^10 2020-06-27 …
设函数f(x)=1(|x-1|-a)2的定义域为D,其中a<1.(1)当a=-3时,写出函数f(x 2020-07-25 …
整式分式题1.x+1/x=4,求x^2/x^4+x^2+12.定义新运算:x@y=x+2y/x-y 2020-07-30 …
证明这个数列是周期序列构造一个无穷数列a(i),i=1,2,3,..其中的每一个数都是一个一位数。 2020-08-02 …
在线等数学题解对于任意的两个自然数a和b,规定新的运算:a△b=a×(a+1)×(a+2)×...× 2020-12-13 …