早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知,若过定点、以(λ∈R)为法向量的直线l1与过点以为法向量的直线l2相交于动点P.(1)求直线l1和l2的方程;(2)求直线l1和l2的斜率之积k1k2的值,并证明必存在两个定点E,F,使得恒

题目详情
已知,若过定点、以(λ∈R)为法向量的直线l1与过点为法向量的直线l2相交于动点P.
(1)求直线l1和l2的方程;
(2)求直线l1和l2的斜率之积k1k2的值,并证明必存在两个定点E,F,使得恒为定值;
(3)在(2)的条件下,若M,N是上的两个动点,且,试问当|MN|取最小值时,向量是否平行,并说明理由.
▼优质解答
答案和解析
(1)根据所给直线上的定点坐标以及法向量,即可写出两直线方程.
(2)根据(1)中所求直线l1和l2的方程,可分别求出两直线的斜率,再计算k1k2,为定值,再用p点坐标表示k1k2,与前面所求k1k2的值相等,即可得到P点的轨迹方程.为椭圆,根据椭圆定义,可知椭圆上的点到两个焦点的距离之和为定植,所以必存在两个定点E,F,使得恒为定值.
(3)因为M,N的横坐标相同,设出它们的纵坐标,先把|MN|用M,N的纵坐标表示,根据且,求出M,N纵坐标的关系式,代入|MN|,即可求出|MN|的最小值,以及相应的M,N纵坐标,并据此求出向量的坐标,根据两向量平行的坐标关系,即可判断向量是否平行.
【解析】
(1)直线l1的法向量,l1的方程:
即为
直线l2的法向量,l2的方程:
即为. 
(2).   
设点P的坐标为(x,y),由,得
由椭圆的定义的知存在两个定点E、F,使得恒为定值4.
此时两个定点E、F为椭圆的两个焦点.
(3)设,则
,得y1y2=-6<0.
|MN|2=(y1-y22=y12+y22-2y1y2≥-2y1y2-2y1y2=-4y1y2=24;
当且仅当时,|MN|取最小值,故平行.