早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,△OAB中,OA=OB=10,∠AOB=70°,以点O为圆心,6为半径的优弧MN分别交OA、OB于点M,N.(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转70°得OP′.求证:AP=BP′;(2)点T在左半

题目详情
如图,△OAB中,OA=OB=10,∠AOB=70°,以点O为圆心,6为半径的优弧
MN
分别交OA、OB于点M,N.
作业帮
(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转70°得OP′.求证:AP=BP′;
(2)点T在左半弧上,若AT与弧相切,求点T到OA的距离;
(3)设点Q在优弧
MN
上,当△AOQ的面积最大时,直接写出∠BOQ的度数.
▼优质解答
答案和解析
(1)证明:如图1,∵∠AOP=∠AOB+∠BOP=80°+∠BOP,
∠BOP′=∠POP′+∠BOP=80°+∠BOP,作业帮
∴∠AOP=∠BOP′,
∵在△AOP和△BOP′中
OA=OB
∠AOP=∠BOP′
OP=OP′

∴△AOP≌△BOP′(SAS),
∴AP=BP′;

(2) 如图1,连接OT,过点T作TH⊥OA于点H,
∵AT是 O的切线,
∴∠ATO=90°,
∴AT=
OA2-OT2
=
102-62
=8,
1
2
×OA×TH=
1
2
×AT×OT,
1
2
×10×TH=
1
2
×8×6,
解得:TH=
24
5
,即点T到OA的距离为
24
5

作业帮
(3) 如图2,当OQ⊥OA时,△AOQ的面积最大;
理由:∵OQ⊥OA,
∴QO是△AOQ中最长的高,则△AOQ的面积最大,
∴∠BOQ=∠AOQ+∠AOB=90°+70°=160°,
当Q点在优弧
MN
右侧上,
∵OQ⊥OA,
∴QO是△AOQ中最长的高,则△AOQ的面积最大,
∴∠BOQ=∠AOQ-∠AOB=90°-70°=20°,
综上所述:当∠BOQ的度数为20°或160°时,△AOQ的面积最大.