早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在△ABC中,AB=AC,∠B=30°,BC=8,D在边BC上,E在线段DC上,DE=4,△DEF是等边三角形,边DF交边AB于点M,边EF交边AC于点N.(1)求证:△BMD∽△CNE;(2)当BD为何值时,以M为圆心,

题目详情
如图,在△ABC中,AB=AC,∠B=30°,BC=8,D在边BC上,E在线段DC上,DE=4,△DEF是等边三角形,边DF交边AB于点M,边EF交边AC于点N.

(1)求证:△BMD∽△CNE;
(2)当BD为何值时,以M为圆心,以MF为半径的圆与BC相切?
(3)设BD=x,五边形ANEDM的面积为y,求y与x之间的函数解析式及自变量x的取值范围;当x为何值时,y有最大值?并求出y的最大值.
▼优质解答
答案和解析
(1)通过证明角相等,从而证明△BMD∽△CNE。
(2)当BD=16﹣8 时,以M为圆心,以MF为半径的圆与BC相切
(3)y=﹣ (x﹣2) 2 + (0≤x≤4)
当x=2时,y有最大值,最大值为


试题分析:(1)证明:∵AB=AC,
∴∠B=∠C=30°,
∵△DEF是等边三角形,
∴∠FDE=∠FED=60°,
∴∠MDB=∠NEC=120°,
∴∠BMD=∠B=∠C=∠CNE=30°,
∴△BMD∽△CNE;
(2)过点M作MH⊥BC,
∵以M为圆心,以MF为半径的圆与BC相切,
∴MH=MF,
设BD=x,
∵△DEF是等边三角形,
∴∠FDE=60°,
∵∠B=30°,
∴∠BMD=∠FDE﹣∠B=60°﹣30°=30°=∠B,
∴DM=BD=x,
∴MH=MF=DF﹣MD=4﹣x,
在Rt△DMH中,sin∠MDH=sin60°= = =
解得:x=16﹣8
∴当BD=16﹣8 时,以M为圆心,以MF为半径的圆与BC相切;
(3)过点M作MH⊥BC于H,过点A作AK⊥BC于K,
∵AB=AC,
∴BK=BC=×8=4,
∵∠B=30°,
∴AK=BK•tan∠B=4× =
∴S △ABC =BC•AK=×8× =
由(2)得:MD=BD=x,
∴MH=MD•sin∠MDH= x,
∴S △BDM =•x• x= x 2
∵△DEF是等边三角形且DE=4,BC=8,
∴EC=BC﹣BD﹣DE=8﹣x﹣4=4﹣x,
∵△BMD∽△CNE,
∴S △BDM :S △CEN =( 2 =
∴S △CEN = (4﹣x) 2
∴y=S △ABC ﹣S △CEN ﹣S △BDM = x 2 (4﹣x) 2 =﹣ x 2 +2 x+ =﹣ (x﹣2) 2 + (0≤x≤4),
当x=2时,y有最大值,最大值为


点评:中考压轴题,综合性较强,难度较大,注意数形结合思想与方程思想的应用