早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,菱形ABCD的内切圆O与各边分别切于E,F,G,H,在弧EF与GH上分别作圆O的切线交AB于M,交BC于N,交CD于P,交DA于Q,求证:MQ∥NP.

题目详情
如图,菱形ABCD的内切圆O与各边分别切于E,F,G,H,在弧EF与GH上分别作圆O的切线交AB于M,交BC于N,交CD于P,交DA于Q,求证:MQ∥NP.
▼优质解答
答案和解析
证明:设∠ABC=2α,∠BNM=2β,∠BMN=2γ.则
由ON平分∠ONM,得∠ONC=∠ONM=
1
2
(180°-2β)=90°-β;
同理,∠OMN=∠OMA=90°-γ.
而∠CON=180°-∠OCN-∠ONC=β+α=90°-γ,
∵∠A=∠C
∴∠OCN=∠MAO
∴△CON∽△AMO,
∴AM:AO=CO:CN,即AM•CN=AO2
同理,AQ•CP=AO2,∴AM•CN=AQ•CP.
∴△AMQ∽△CPN,∴∠AMQ=∠CPN.
∴MQ∥NP.