早教吧作业答案频道 -->数学-->
点差法在椭圆,双曲线,抛物线中通用吗
题目详情
点差法在椭圆,双曲线,抛物线中通用吗
▼优质解答
答案和解析
可以用,特别出现中点和斜率的时候可以采用这种方式,需注意1,先判断斜率是否存在 2然后设方程的时候用到点差法需要检验,如一个题目,一点在双曲线外,求过这点A与双曲线的交于两点,且这点A是中点,则你用点差法时候,要把直线方程和双曲线联立,化成一元二次方程,然后判段判别式是否大于0,如是,则该直线存在,若不是,则该直线不存在
看了 点差法在椭圆,双曲线,抛物线...的网友还看了以下:
抛物线C1的顶点在坐标原点,它的准线经过椭圆C2:x2/a2-y2/b2=1的一个焦点F1且垂直于 2020-04-08 …
数学问题:已知一椭圆以抛物线x^2=2p(y+(p/2))的准线为下准线1,已知一椭圆以抛物线x^ 2020-05-19 …
已知抛物线y2=8(x-2)的焦点和准线分别是一椭圆的焦点和对应的准线,求椭圆短轴端点的轨迹方程已 2020-05-19 …
圆,椭圆,双曲线,抛物线有什么内在联系?圆,椭圆,双曲线,抛物线都涉及到了焦点,离心率,定点到定直 2020-05-20 …
一个关于抛物线和椭圆的问题抛物线顶点在原点,它的准线过椭圆X^2/a^2+Y^2/b^2=1(a> 2020-06-21 …
椭圆抛物线综合问题设椭圆x~2+y~2/b~2=1和一开口向右.顶点在原点的抛物线有公共点,若p为 2020-06-21 …
抛物线的顶点在原点,它的准线过椭圆C:x^2/a^2+y^2/b^2抛物线的顶点在原点,它的准线过 2020-07-31 …
(本小题满分14分)已知椭圆的一个焦点与抛物线的焦点重合,P为椭圆与抛物线的一个公共点,且|PF|= 2020-11-01 …
已知椭圆C的两个焦点分别为F1(-1,0),F2(1,0),点在椭圆C上,抛物线E以椭圆C的中心为顶 2020-11-07 …
(2014•江门模拟)已知抛物线Σ1:y=14x2的焦点F在椭圆Σ2:x2a2+y2b2=1(a>b 2020-11-12 …