早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知ABCD是边长为4的正方形,E、F分别是AB、AD的中点,GC垂直于ABCD所在的平面,且GC=2.求点B到平面EFG的距离.

题目详情
已知ABCD是边长为4的正方形,E、F分别是AB、AD的中点,GC垂直于ABCD所在的平面,且GC=2.求点B到平面EFG的距离.
▼优质解答
答案和解析
如图,连接EG、FG、EF、BD、AC、EF、BD分别交AC于H、O.因为ABCD是正方形,E、F分别为AB和AD的中点,故EF∥BD,H为AO的中点.
BD不在平面EFG上.否则,平面EFG和平面ABCD重合,从而点G在平面的ABCD上,与题设矛盾.
由直线和平面平行的判定定理知BD∥平面EFG,所以BD和平面EFG的距离就是点B到平面EFG的距离.
∵BD⊥AC,
∴EF⊥HC.
∵GC⊥平面ABCD,
∴EF⊥GC,
∴EF⊥平面HCG.
∴平面EFG⊥平面HCG,HG是这两个垂直平面的交线.
作OK⊥HG交HG于点K,由两平面垂直的性质定理知OK⊥平面EFG,所以线段OK的长就是点B到平面EFG的距离.
∵正方形ABCD的边长为4,GC=2,
∴AC=4
2
,HO=
2
,HC=3
2

∴在Rt△HCG中,HG=
(3
2
)2+22=
22

由于Rt△HKO和Rt△HCG有一个锐角是公共的,故Rt△HKO∽△HCG.
∴OK=
HO•GC
HG
2
×2
作业帮用户 2017-10-13
问题解析
求点B到面GEF的距离,就是求C到平面EFG距离的
1
3
,直接作垂线求解即可.
名师点评
本题考点:
点、线、面间的距离计算.
考点点评:
本小题主要考查直线与平面的位置关系、平面与平面的位置关系、点到平面的距离等有关知识,考查学生的空间想象能力和思维能力,属于中档题.解决此类问题应该注意从三维空间向二维平面的转化,从而找到解题的捷径.
我是二维码 扫描下载二维码