早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,正三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,D是BC的中点.(Ⅰ)求证:AD⊥平面B1BCC1;(Ⅱ)求证:A1B∥平面ADC1.

题目详情
如图,正三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,D是BC的中点.
(Ⅰ)求证:AD⊥平面B1BCC1
(Ⅱ)求证:A1B∥平面ADC1
▼优质解答
答案和解析
(Ⅰ)证明:因为ABC-A1B1C1是正三棱柱,所以CC1⊥平面ABC
因为AD⊂平面ABC,所以CC1⊥AD
因为△ABC是正三角形,D为BC中点,所以BC⊥AD,
因为CC1∩BC=C,所以AD⊥平面B1BCC1
(Ⅱ)证明:连接A1C,交AC1于点O,连接OD.

由 ABC-A1B1C1是正三棱柱,得四边形ACC1A1为矩形,O为A1C的中点.
又D为BC中点,所以OD为△A1BC中位线,
所以A1B∥OD,
因为A1B⊄平面ADC1,OD⊂平面ADC1
所以A1B∥平面ADC1