早教吧作业答案频道 -->其他-->
如图,在四棱锥中P-ABCD中,底面ABCD为菱形,∠BAD=60°,PA=PD=AD=2,点M在线段PC上,且PM=2MC,N为AD的中点.(Ⅰ)求证:BC⊥平面PNB;(Ⅱ)(只文科生做)若平面PAD⊥平面ABCD,求三棱锥P-NBM的
题目详情
如图,在四棱锥中P-ABCD中,底面ABCD为菱形,∠BAD=60°,PA=PD=AD=2,点M在线段PC上,且PM=2MC,N为AD的中点.
(Ⅰ)求证:BC⊥平面PNB;
(Ⅱ)(只文科生做)若平面PAD⊥平面ABCD,求三棱锥P-NBM的体积;
(只理科生做)若平面PAD⊥平面ABCD,求二面角P-NB-M的平面角的正切值.
(Ⅰ)求证:BC⊥平面PNB;
(Ⅱ)(只文科生做)若平面PAD⊥平面ABCD,求三棱锥P-NBM的体积;
(只理科生做)若平面PAD⊥平面ABCD,求二面角P-NB-M的平面角的正切值.
▼优质解答
答案和解析
证明:( I)PA=PD,N为AD的中点,
∴PN⊥AD,
又底面ABCD为菱形,∠BAD=60°,
∴BN⊥AD,
∴AD⊥平面PNB,
∵AD∥BC,
∴BC⊥平面PNB.
( II)(文科)∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PN⊥AD
∴PN⊥平面ABCD,
∴PN⊥NB,
∵PA=PD=AD=2
∴PN=NB=
,
∴S△PNB=
又BC⊥平面PNB,PM=2MC,
∴VP−NBM=VM−PNB=
VC−PNB=
•
•
•
•
•2=
.
(理科)作ME∥BC交PB于E点,作EF⊥NB于F点,连结MF.
∵BC⊥平面PNB,
∴ME⊥平面PNB,EF是MF在平面PNB上的射影
∴MF⊥BN,
∴∠MFE是二面角P-NB-M的平面角,
∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PN⊥AD
∴PN⊥平面ABCD,
∴PN⊥NB,
∵PA=PD=AD=2∴PN=
,
在△PBC中可知ME=
BC=
,
在△PNB中EF=
PN=
∴tan∠MFE=
.
∴PN⊥AD,
又底面ABCD为菱形,∠BAD=60°,
∴BN⊥AD,
∴AD⊥平面PNB,
∵AD∥BC,
∴BC⊥平面PNB.
( II)(文科)∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PN⊥AD
∴PN⊥平面ABCD,
∴PN⊥NB,
∵PA=PD=AD=2
∴PN=NB=
3 |
∴S△PNB=
3 |
2 |
又BC⊥平面PNB,PM=2MC,
∴VP−NBM=VM−PNB=
2 |
3 |
2 |
3 |
1 |
3 |
1 |
2 |
3 |
3 |
2 |
3 |
(理科)作ME∥BC交PB于E点,作EF⊥NB于F点,连结MF.
∵BC⊥平面PNB,
∴ME⊥平面PNB,EF是MF在平面PNB上的射影
∴MF⊥BN,
∴∠MFE是二面角P-NB-M的平面角,
∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PN⊥AD
∴PN⊥平面ABCD,
∴PN⊥NB,
∵PA=PD=AD=2∴PN=
3 |
在△PBC中可知ME=
2 |
3 |
4 |
3 |
在△PNB中EF=
1 |
3 |
| ||
3 |
∴tan∠MFE=
4
| ||
3 |
看了 如图,在四棱锥中P-ABCD...的网友还看了以下:
[高数]极限与无穷级数1,1/2lim[2+(-1)^n]开N方,n→∞为何极限为1/2?若N为偶则 2020-03-31 …
求教工程数学线性代数1若n阶矩阵A为正交矩阵,则A必为可逆矩阵且A-1=A'2若Rank(A)=n 2020-04-12 …
一元二次方程的题(全写过程,才给分)1. 若非零实数a,b(a≠b)满足a2-a-2009=0,b 2020-05-16 …
若m²+4m+n²-8n+20=0,则n/m的值为 2.若x/a=y/b=z/c=3,则(2x-3 2020-05-16 …
设计一个算法,求1X3X5X7X9X11的值高二数学“算法初步”,不是问解法算法:第一步,输入n。 2020-05-17 …
不等式的证明设m,n为正整数,f(n)=1+1/2+1/3+.+1/n,证明(1)若n>m,则f( 2020-07-16 …
方程组y^2=4x,y=2x+n有2组不同实数解.(1)求n的范围(2)若n在取值范围内,取最大整 2020-08-01 …
已知M={X∈R|X>0},N={X∈R|X>a}1,若M是N的子集,求A的取值范围.2,若N是M 2020-08-01 …
已知M={x∈R│x>0}N={x∈R│x>a}1,若M是N的子集,求a的取值范围.2.若N是M的 2020-08-01 …
若1+2+3+…+n=a,求代数式(xny)(xn-1y2)(xn-2y3)…(x2yn-1)(xy 2020-11-03 …