早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在三棱台ABC-A1B1C1中,侧棱AA1⊥底面ABC,∠BAC=∠BC1C=90°,A1C1=a,C1B=2a.(I)求证AB⊥平面AA1C1C;(II)求证C1C⊥平面ABC1;(III)求AC与BC1所成的角.

题目详情
如图,在三棱台ABC-A1B1C1中,侧棱AA1⊥底面ABC,∠BAC=∠BC1C=90°,A1C1=a,C1B=2a.
(I)求证AB⊥平面AA1C1C;
(II)求证C1C⊥平面ABC1
(III)求AC与BC1所成的角.
▼优质解答
答案和解析
(I)∵侧棱AA1⊥平面ABC,
AB⊂平面ABC,∴AA1⊥AB,
又∵∠BAC=90°∴AB⊥AC,
AA1∩AC=A,
从而AB⊥平面AA1C1C…(4分)
(II)由(I)可知AB⊥平面AA1C1C,C1C⊂平面AA1C1C,
∴C1C⊥AB
又∵C1C⊥BC1并且AB∩BC1=B,
∴C1C⊥平面ABC1…(8分)
(III)连接A1B,∵AC∥A1C1∴AC与BC1所成的角是∠BC1A1(或它的补角)
∵A1C1⊥A1B1,A1C1⊥A1A,,A1A∩A1B1=A1,∴A1C1⊥平面A1ABB1
∵BA1⊂平面A1ABB1∴A1C1⊥A1B
在直角三角形A1C1B中,A1C1=a,C1B=2a
∠BC1A1=60°
即  异面直线AC与BC1所成的角为60°…(15分)