早教吧作业答案频道 -->其他-->
在四棱锥P-ABCD中,PD⊥底面ABCD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=1,CD=2.(1)求证:BE∥平面PAD;(2)求证:BC⊥平面PBD;(3)若直线PB与底面ABCD所成角为45°,求线
题目详情
在四棱锥P-ABCD中,PD⊥底面ABCD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=1,CD=2.
(1)求证:BE∥平面PAD;
(2)求证:BC⊥平面PBD;
(3)若直线PB与底面ABCD所成角为45°,求线段PD的长(此问只需写出答案,无需写过程).
(1)求证:BE∥平面PAD;
(2)求证:BC⊥平面PBD;
(3)若直线PB与底面ABCD所成角为45°,求线段PD的长(此问只需写出答案,无需写过程).
▼优质解答
答案和解析
(1)取PD的中点F,连结EF,AF,
∵E为PC中点,∴EF∥CD,且EF=
CD=1,
在梯形ABCD中,AB∥CD,AB=1,∴EF∥AB,EF=AB,
四边形ABEF为平行四边形,∴BE∥AF,
∵BE⊄平面PAD,AF⊂平面PAD,
∴BE∥平面PAD.
(2)取CD中点M,连结BM,可知△BMC为直角三角形且BM=MC=1,∴BC=
,
在△ABD中,可知BD=
,∴CD2=BD2+BC2,∴BC⊥BD.
又由PD⊥平面ABCD,可得PD⊥BC,
又PD∩BD=D,
∴BC⊥平面PBD.
(3)∵PD⊥底面ABCD,∴∠PBD是斜线PB与平面ABCD所成的线面角.
可知∠PBD=45°,由(2)可知:BD=
.
∴PD=BD=
.
∵E为PC中点,∴EF∥CD,且EF=
1 |
2 |
在梯形ABCD中,AB∥CD,AB=1,∴EF∥AB,EF=AB,
四边形ABEF为平行四边形,∴BE∥AF,
∵BE⊄平面PAD,AF⊂平面PAD,
∴BE∥平面PAD.
(2)取CD中点M,连结BM,可知△BMC为直角三角形且BM=MC=1,∴BC=
2 |
在△ABD中,可知BD=
2 |
又由PD⊥平面ABCD,可得PD⊥BC,
又PD∩BD=D,
∴BC⊥平面PBD.
(3)∵PD⊥底面ABCD,∴∠PBD是斜线PB与平面ABCD所成的线面角.
可知∠PBD=45°,由(2)可知:BD=
2 |
∴PD=BD=
2 |
看了 在四棱锥P-ABCD中,PD...的网友还看了以下:
在△ABC和△DEF中,下列条件中,能根据它判定△ABC≌△DEF的是A、AB=DE,BC=EF, 2020-05-13 …
设栈S的初始状态为空,元素a,b,c,d,e,f依次入栈S,出栈的序列为b,d,f,e,c,a…… 2020-05-17 …
给定关系模式R(A.B,C,D)、S(C,D,E),与语句如下:A.A.C. S.C B.A.,B, 2020-05-26 …
如图,若AB∥CD,则∠B、∠C、∠E三者之间的关系是()A.∠B+∠C+∠E=180°B.∠B+ 2020-06-12 …
如图,在△ABC中,∠BAC=90°,D是BC中点,AE⊥AD交CB延长线于点EAE B D C 2020-06-27 …
充分必要性问题a,b,c,d,e,f均为非零实数,不等式ax^2+bx+c>0和dx^2+ex+f 2020-06-27 …
证明(A+B+C)/(D+E+F)不等于(A/D+B/E+C/F)/3请老师把证明过程写下来谢谢! 2020-07-20 …
若abcd都是整数,其中c>0,并且满足a+b+c=d,b+c+d=e,c+d+e=a,e+a=b 2020-07-30 …
深水爆炸形成的气泡的振荡周期为T=p^a×d^b×e^c,式中p为压强,d是水的密度,e是爆炸的总能 2020-11-07 …
(2009•宜宾)A、B、C、D、E、F、G是常见的七种物质,A是含有两种元素的固体化合物,C是一切 2020-11-12 …