早教吧作业答案频道 -->数学-->
急急急求微分方程满足所给初始条件的特解:(1)y'sinx=ylny,x=π/2时y=e.(2)cosydx+(1+e^(-x))sinydy=0,x=0时y=π/4.
题目详情
急 急 急 求微分方程满足所给初始条件的特解
:(1)y'sinx=ylny,x=π/2时y=e.(2)cos ydx+(1+e^(-x))sin ydy=0,x=0时y=π/4.
:(1)y'sinx=ylny,x=π/2时y=e.(2)cos ydx+(1+e^(-x))sin ydy=0,x=0时y=π/4.
▼优质解答
答案和解析
dy/(ylny)=dx/sinx
ln(lny)=dx/sinx=sinxdx/sinx^2=-dcosx/(1-cosx^2)=(-1/2)dcosx*[1/(1-cosx)+1/(1+cosx)]
=(-1/2)[-ln(1-cosx)+ln(1+cosx)]+c1=-(1/2)ln(1+cosx)^2/(1+cosx)(1-cosx)+c1
=ln|sinx|/(1+cosx)+c1
lny=c|sinx|/(1+cosx) 求的c=1
sinydy/cosy=-dx/(1+e(-x))
-ln|cosy|=-e^xdx/(1+e^x)=-ln(1+e^x)+c1
cosy=c(1+e^x) c=(根号2)/4
ln(lny)=dx/sinx=sinxdx/sinx^2=-dcosx/(1-cosx^2)=(-1/2)dcosx*[1/(1-cosx)+1/(1+cosx)]
=(-1/2)[-ln(1-cosx)+ln(1+cosx)]+c1=-(1/2)ln(1+cosx)^2/(1+cosx)(1-cosx)+c1
=ln|sinx|/(1+cosx)+c1
lny=c|sinx|/(1+cosx) 求的c=1
sinydy/cosy=-dx/(1+e(-x))
-ln|cosy|=-e^xdx/(1+e^x)=-ln(1+e^x)+c1
cosy=c(1+e^x) c=(根号2)/4
看了 急急急求微分方程满足所给初始...的网友还看了以下: