早教吧作业答案频道 -->其他-->
(2012•泸州)如图,矩形ABCD中,E是BC的中点,连接AE,过点E作EF⊥AE交DC于点F,连接AF.设ABAD=k,下列结论:(1)△ABE∽△ECF,(2)AE平分∠BAF,(3)当k=1时,△ABE∽△ADF,其中结论正确的
题目详情
(2012•泸州)如图,矩形ABCD中,E是BC的中点,连接AE,过点E作EF⊥AE交DC于点F,连接AF.设
=k,下列结论:(1)△ABE∽△ECF,(2)AE平分∠BAF,(3)当k=1时,△ABE∽△ADF,其中结论正确的是( )
A.(1)(2)(3)
B.(1)(3)
C.(1)(2)
D.(2)(3)
AB |
AD |
A.(1)(2)(3)
B.(1)(3)
C.(1)(2)
D.(2)(3)
▼优质解答
答案和解析
(1)∵四边形ABCD是矩形,
∴∠B=∠C=90°,
∴∠BAE+∠AEB=90°,
∵EF⊥AE,
∴∠AEB+∠FEC=90°,
∴∠BAE=∠FEC,
∴△ABE∽△ECF;
故(1)正确;
(2)∵△ABE∽△ECF,
∴
=
,
∵E是BC的中点,
即BE=EC,
∴
=
,
在Rt△ABE中,tan∠BAE=
,
在Rt△AEF中,tan∠EAF=
,
∴tan∠BAE=tan∠EAF,
∴∠BAE=∠EAF,
∴AE平分∠BAF;
故(2)正确;
(3)∵当k=1时,即
=1,
∴AB=AD,
∴四边形ABCD是正方形,
∴∠B=∠D=90°,AB=BC=CD=AD,
∵△ABE∽△ECF,
∴
=
=
=2,
∴CF=
CD,
∴DF=
CD,
∴AB:AD=1,BE:DF=2:3,
∴△ABE与△ADF不相似;
故(3)错误.
故选C.
∴∠B=∠C=90°,
∴∠BAE+∠AEB=90°,
∵EF⊥AE,
∴∠AEB+∠FEC=90°,
∴∠BAE=∠FEC,
∴△ABE∽△ECF;
故(1)正确;
(2)∵△ABE∽△ECF,
∴
EC |
AB |
EF |
AE |
∵E是BC的中点,
即BE=EC,
∴
BE |
AB |
EF |
AE |
在Rt△ABE中,tan∠BAE=
BE |
AB |
在Rt△AEF中,tan∠EAF=
EF |
AE |
∴tan∠BAE=tan∠EAF,
∴∠BAE=∠EAF,
∴AE平分∠BAF;
故(2)正确;
(3)∵当k=1时,即
AB |
AD |
∴AB=AD,
∴四边形ABCD是正方形,
∴∠B=∠D=90°,AB=BC=CD=AD,
∵△ABE∽△ECF,
∴
AB |
EC |
AE |
EF |
BE |
FC |
∴CF=
1 |
4 |
∴DF=
3 |
4 |
∴AB:AD=1,BE:DF=2:3,
∴△ABE与△ADF不相似;
故(3)错误.
故选C.
看了 (2012•泸州)如图,矩形...的网友还看了以下:
以三棱锥各面重心为顶点得到一个新三棱锥,则它的表面积是原三棱锥表面积的A.1/16B.1/9C.1 2020-04-24 …
若4乘64的a+1次方乘256的a+2次方=4的61次方,求以x为未知数的方程3x+5=a(x-1 2020-04-27 …
设f(x)=ex-a(x+1).(1)若a>0,f(x)≥0对一切x∈R恒成立,求a的最大值;(2 2020-05-15 …
已知(a-1)的a-1方=1,求整数a的值 2020-05-15 …
已知2NO2+2NaOH==NaNO2+NaNO3+H2O ,NO+NO2+2NaOH==2NaN 2020-05-16 …
在完全二叉树中除最下面一层外,每一层结点个数是上一层结点个数的A.1倍B.2倍C.3倍D.n倍 2020-05-24 …
数列证明题(在线等,完成后在多给分)下面的a(1),a(2),.a(n)都是数组的项.a(n)*2 2020-06-06 …
关于x的不等式2x-a≤-1的解集如图所示,那么a的值是答案是a=-1,因为:x≤2分之a减一,而 2020-06-06 …
已知函数f(x)=x+a/x+b,(x≠0),其中a、b∈R.(1)若曲线y=f(x)在点P(2, 2020-06-08 …
设f(x)=ex-a(x+1).(1)若a>0,f(x)≥0对一切x∈R恒成立,求a的最大值;(2 2020-06-12 …