早教吧作业答案频道 -->数学-->
数列极限的证明已知x1=2,xn+1=2+1/xn,求lim(n->无穷大)xn=?该数列虽有上界,但不是单调递增数列,怎么断定limXn=limXn+1?如何证明该数列存在极限?
题目详情
数列极限的证明
已知x1=2,xn+1=2+1/xn,求lim(n->无穷大)xn=?
该数列虽有上界,但不是单调递增数列,怎么断定limXn=limXn+1?如何证明该数列存在极限?
已知x1=2,xn+1=2+1/xn,求lim(n->无穷大)xn=?
该数列虽有上界,但不是单调递增数列,怎么断定limXn=limXn+1?如何证明该数列存在极限?
▼优质解答
答案和解析
现在,式子两边取极限.
lim x(n+1)=lim[2+1/xn]-----(n->无穷大)
也就是:lim x(n+1)=2+ 1/lim(xn);
最重要的,要知道:lim x(n+1)=lim xn (x->无穷大);
因为 n 和 n+1 都是无穷大.
好了,后面不用我算了.你已经明白了吧.
PS:
现在,假设你的数列是有极限的,极限是A,那么,n和n+1都是无穷大(n趋于无穷大的时候),所以,lim x(n+1)=A,lim xn=A,所以lim x(n+1)=lim xn;
如果,lim xn 和lim n+1在n趋于无穷大的时候不相等,因为n已经是无穷大了,xn的值还是没有趋于固定的值,所以,xn的极限不存在(n->无穷大).
lim x(n+1)=lim[2+1/xn]-----(n->无穷大)
也就是:lim x(n+1)=2+ 1/lim(xn);
最重要的,要知道:lim x(n+1)=lim xn (x->无穷大);
因为 n 和 n+1 都是无穷大.
好了,后面不用我算了.你已经明白了吧.
PS:
现在,假设你的数列是有极限的,极限是A,那么,n和n+1都是无穷大(n趋于无穷大的时候),所以,lim x(n+1)=A,lim xn=A,所以lim x(n+1)=lim xn;
如果,lim xn 和lim n+1在n趋于无穷大的时候不相等,因为n已经是无穷大了,xn的值还是没有趋于固定的值,所以,xn的极限不存在(n->无穷大).
看了 数列极限的证明已知x1=2,...的网友还看了以下:
已知f(x)=12x2-x+32,是否存在实数m,使函数的定义域和值域都是[1,m](m>1)?若 2020-05-21 …
●设数组a[1..n,1.m](n>1,m>1)中的元素以行为主序存放,每个元素占用1个存储单元,则 2020-05-26 …
已知P={x|x2-8x-20≤0},S={x|1-m≤x≤1+m}(1)是否存在实数m,使x∈P 2020-06-12 …
求语文文言文“虽”字的释义!解释下列字在不同的句子中的含义虽:1虽杀臣,不能绝也()2虽我之死,有 2020-06-23 …
设F1,F2是椭圆x2a2+y2b2=1(a>b>0)的左右焦点,若直线x=ma(m>1)上存在一 2020-07-20 …
设F1,F2是椭圆x2a2+y2b2=1(a>b>0)的左右焦点,若直线x=ma(m>1)上存在一 2020-07-20 …
已知P={XIX^2-8x-20≤0},S={xI1-m≤x≤1+m}(1)是否存在实数m,使“X∈ 2020-10-31 …
已知数列|an|满足:an=n+1+87an+1,且存在大于1的整数k使ak=0,m=1+87a1. 2020-11-19 …
如图1,在平面直角坐标系中,A(m,0),B(0,n),反比例函数y=kx(x>0)的图象经过点P( 2020-12-25 …
已知函数f(x)=log4(4x+1)+kx是偶函数.(1)求k的值;(2)若函数h(x)=4f(x 2020-12-31 …