早教吧 育儿知识 作业答案 考试题库 百科 知识分享

下列说法正确的是()A.若f(x)和g(x)在x=0点的某邻域无界,则limx→0f(x)g(x)=∞B.若f(x)在x=0点的某邻域内有界,g(x)在x=0的某邻域无界,则f(x),g(x)在x=0点的某邻域

题目详情
下列说法正确的是(  )

A.若f(x)和g(x)在x=0点的某邻域无界,则
lim
x→0
f(x)g(x)=∞
B.若f(x)在x=0点的某邻域内有界,g(x)在x=0的某邻域无界,则f(x),g(x)在x=0点的某邻域一定无界
C.若f(x)和g(x)都在x=0点的某邻域有界,则f(x)+g(x)在x=0点的某邻域一定有界
D.若f(x),g(x)在x=0点的某邻域内都有界,则必有
lim
x→0
f(x)g(x)=0
▼优质解答
答案和解析
选项C正确.利用局部有界的定义.因为f(x)g(x)在x=0的某邻域有界,必存在M>0,
使|f(x)|<M,|g(x)|<M,所以|f(x)+g(x)|<|f(x)|+|g(x)|<2M.
A、B、D的反例:
A:取f(x)=g(x)=
1
x
sin
1
x
,   x≠0
0,   x=0
,但是,对于任意正数k,取xk=
1
,均有f(xk)=g(xk)=0,从而f(xk)g(xk)=0.
B:取f(x)=x,g(x)=
1
x
, x≠0
1, x=0
,但f(x)g(x)=
1,  x≠0
0,  x=0
为有界的.
D:取f(x)=g(x)=1为常数函数,均为有界的,但f(x)g(x)≡1.
综上,正确答案为C.
故选:C.