早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设函数f(x)=x•tanx•esinx,则f(x)是()A.偶函数B.无界函数C.周期函数D.单调函数

题目详情
设函数f(x)=x•tanx•esinx,则f(x)是(  )
A. 偶函数
B. 无界函数
C. 周期函数
D. 单调函数
▼优质解答
答案和解析

A:因为指数函数没有奇偶性,故esinx没有奇偶性,从而f(x)没有奇偶性,排除A.
B:因为esinx>e-1>0,xtanx是无界的,对于任意M>0,只需取|x|足够大,使得|xtanx|>eM,
则有|f(x)|>M,故f(x)是无界的,B选项正确.
C:因为x与esinx均没有周期性,故f(x)不是周期函数,故排除C.
D:因为f′(x)=tanxesinx+
x
cos2x
esinx+xsinxesinx=esinx(tanx+
x
cos2x
+xsinx),其符号不定,
如:f(
π
4
)>0,f(−
π
4
)<0,从而f没有单调性.
综上,故选:B.