早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如何求证二项式系数之和Cn0,Cn1,Cn2,...,Cnn叫做展开式中的二项式系数,有Cn0+Cn1+Cn2+...+Cnn=2^n成立.如何求证以上公式?

题目详情
如何求证二项式系数之和
Cn0,Cn1,Cn2,...,Cnn叫做展开式中的二项式系数,有Cn0+Cn1+Cn2+...+Cnn=2^n成立.
如何求证以上公式?
▼优质解答
答案和解析
定理(1)二项式系数和等于2^n ∵(1+x)^n=Cn0+Cn1x+Cn2x^2+Cn3x^3+…+Cnnx^n 令x=1得 Cn0+Cn1+Cn2+…+Cnn=2^n 定理2:奇数项二项式系数和等于偶数项二项式系数和 ∵(1+x)^n=Cn0+Cn1x+Cn2x^2+Cn3x^3+…+Cnnx^n 令x=1得 C...