早教吧作业答案频道 -->数学-->
积分轮换对称性:对换x和y,边界方程不变即积分区域不变即可,那么对于被积函数有要求对换x和y,被积函数值不变吗?还有积分区域关于y=x对称,这个也属于轮换对称性吗?它有和轮换对称性相同
题目详情
积分轮换对称性:对换x和y,边界方程不变即积分区域不变即可,那么对于被积函数有要求对换x和y,被积函数值不变吗?还有积分区域关于y=x对称,这个也属于轮换对称性吗?它有和轮换对称性相同的结论吗?
请不要复制别人的
请不要复制别人的
▼优质解答
答案和解析
坐标的轮换对称性,简单的说就是将坐标轴重新命名,如果积分区间的函数表达不变,则被积函数中的x,y,z也同样作变化后,积分值保持不变.
(1) 对于曲面积分,积分曲面为u(x,y,z)=0,如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)仍等于0,即u(y,z,x)=0,也就是积分曲面的方程没有变,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(y,z,x)dS;如果将函数u(x,y,z)=0中的x,y,z换成y,x,z后,u(y,x,z)=0,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(y,x,z)dS;如果将函数u(x,y,z)=0中的x,y,z换成z,x,y后,u(z,x,y)=0,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(z,x,y)dS ,同样可以进行多种其它的变换.
(2) 对于第二类曲面积分只是将dxdy也同时变换即可.比如:如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)=0,那么在这个曲面上的积 分 ∫∫f(x,y,z)dxdy=∫∫f(y,z,x)dydz,∫∫f(x,y,z)dydz=∫∫f(y,z,x)dzdx,∫∫f(x,y,z)dzdx=∫∫f(y,z,x)dxdy.
(3) 将1中积分曲面中的z去掉,就变成了曲线积分满足的轮换对称性:积分曲线为u(x,y)=0,如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)= 0,那么在这个曲线上的积分 ∫∫f(x,y)ds=∫∫f(y,x)ds;实际上如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)=0,则意味着积分曲线关于直线y=x对称 .第二类和(2)总结相同.
(4) 二重积分和三重积分都和(1)的解释类似,也是看积分域函数将x,y,z更换顺序后,相当于将坐标轴重新命名,积分取间没有发生变化,则被积函数作相应变换后,积分值不变.
注意两点,一是被积函数关于某一变量的奇偶性,二是看一下积分区域,是否关于该变量坐标轴两边对称.
比如说2维空间,如果被积函数是X的积函数,那么考察积分区域,是否关于Y对称.如果想要考察X,Y坐标是否可对换,那么就需要考察积分区域是否关于y=x对称.
三维空间类似,如果被积函数是X的积函数,那么考察积分区域,看一下是否关于YZ平面对称.所谓的轮换对称,如果要满足的话,就需要三者之间都可互换了.
但是要注意,这里有一个特殊情况,就是对坐标的曲面积分,例如∫∫X^2dydz,如果x^2是关于YZ平面对称,x^2是偶函数,则这个积分是零,原因是对于坐标的曲面积分,前面和后面的积分符号刚好相反.
(1) 对于曲面积分,积分曲面为u(x,y,z)=0,如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)仍等于0,即u(y,z,x)=0,也就是积分曲面的方程没有变,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(y,z,x)dS;如果将函数u(x,y,z)=0中的x,y,z换成y,x,z后,u(y,x,z)=0,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(y,x,z)dS;如果将函数u(x,y,z)=0中的x,y,z换成z,x,y后,u(z,x,y)=0,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(z,x,y)dS ,同样可以进行多种其它的变换.
(2) 对于第二类曲面积分只是将dxdy也同时变换即可.比如:如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)=0,那么在这个曲面上的积 分 ∫∫f(x,y,z)dxdy=∫∫f(y,z,x)dydz,∫∫f(x,y,z)dydz=∫∫f(y,z,x)dzdx,∫∫f(x,y,z)dzdx=∫∫f(y,z,x)dxdy.
(3) 将1中积分曲面中的z去掉,就变成了曲线积分满足的轮换对称性:积分曲线为u(x,y)=0,如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)= 0,那么在这个曲线上的积分 ∫∫f(x,y)ds=∫∫f(y,x)ds;实际上如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)=0,则意味着积分曲线关于直线y=x对称 .第二类和(2)总结相同.
(4) 二重积分和三重积分都和(1)的解释类似,也是看积分域函数将x,y,z更换顺序后,相当于将坐标轴重新命名,积分取间没有发生变化,则被积函数作相应变换后,积分值不变.
注意两点,一是被积函数关于某一变量的奇偶性,二是看一下积分区域,是否关于该变量坐标轴两边对称.
比如说2维空间,如果被积函数是X的积函数,那么考察积分区域,是否关于Y对称.如果想要考察X,Y坐标是否可对换,那么就需要考察积分区域是否关于y=x对称.
三维空间类似,如果被积函数是X的积函数,那么考察积分区域,看一下是否关于YZ平面对称.所谓的轮换对称,如果要满足的话,就需要三者之间都可互换了.
但是要注意,这里有一个特殊情况,就是对坐标的曲面积分,例如∫∫X^2dydz,如果x^2是关于YZ平面对称,x^2是偶函数,则这个积分是零,原因是对于坐标的曲面积分,前面和后面的积分符号刚好相反.
看了 积分轮换对称性:对换x和y,...的网友还看了以下:
把方程中的x换成-x,方程不变,图像关于()对称.y换成-y,方程不变,图像()对称.吧x,y同时 2020-04-27 …
有关函数、方程和不等式的区别和分类一元一次不等式算函数么,一元一次方程、二元一次方程、分式方程属于 2020-06-03 …
复变函数中保角变换的变换函数一定是解析函数吗复变函数中变换函数解析的变换一定是保角变换,那么保角变 2020-06-20 …
设函数f(x)的定义域为A,值域为B,如果存在函数x=g(t),使得函数y=f(g(t))的值域仍 2020-06-25 …
函数f(x)=(12/x)+3x(x>0),则f(x)的最小值为?这道题可以用配方法吗?如果可以麻 2020-06-27 …
(2012•绍兴三模)在函数中,我们把关于x的一次函数y=ax+b与y=bx+a称为一对交换函数, 2020-07-07 …
怎么理解这句话:"由于自变量的变化过程不同,函数的极限就表现为不同的形式"我个人的理解是这样的:一 2020-07-25 …
积分轮换对称性:对换x和y,边界方程不变即积分区域不变即可,那么对于被积函数有要求对换x和y,被积 2020-08-01 …
有关数学中轮换等式的问题方程x^3-xy+y^3=1满足轮换等式的条件,也就是互换x、y的位置,原方 2020-12-05 …
C语言题目(12)以下程序中函数f的功能是在数组x的n个数(假定n个数互不相同)中找出最大最小数,将 2021-01-07 …