早教吧作业答案频道 -->数学-->
关于介值定理、最值定理的理解1、介值定理:设函数y=f(x)在闭区间[a,b]上连续,则在这区间必有最大最小函数值:f(min)=A,f(max)=B,且A≠B.那么,不论C是A与B之间的怎样一个数,在开区间(a,b)内至少
题目详情
关于介值定理、最值定理的理解
1、
介值定理:设函数y=f(x)在闭区间[a,b]上连续,则在这区间必有最大最小函数值:f(min)=A,f(max)=B,且A≠B .那么,不论C是A与B之间的怎样一个数,在开区间(a,b)内至少有一点ξ,使得 f(ξ)=C (a
1、
介值定理:设函数y=f(x)在闭区间[a,b]上连续,则在这区间必有最大最小函数值:f(min)=A,f(max)=B,且A≠B .那么,不论C是A与B之间的怎样一个数,在开区间(a,b)内至少有一点ξ,使得 f(ξ)=C (a
▼优质解答
答案和解析
这里有一题用了零值定理
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证存在一点ξ∈(0,1),使f'(ξ)=1
证明:令F(x)=f(x)-x
F(1)=f(1)-1=-10
由零值定理知,至少存在一点η∈(1/2,1),使F(η)=0
因为F(0)=0=F(η),那么F(x)在[0,η]上满足罗尔定理,则至少存在一点ξ∈(0,η)使F'(ξ)=0
即存在ξ∈(0,1)使f'(ξ)=1
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证存在一点ξ∈(0,1),使f'(ξ)=1
证明:令F(x)=f(x)-x
F(1)=f(1)-1=-10
由零值定理知,至少存在一点η∈(1/2,1),使F(η)=0
因为F(0)=0=F(η),那么F(x)在[0,η]上满足罗尔定理,则至少存在一点ξ∈(0,η)使F'(ξ)=0
即存在ξ∈(0,1)使f'(ξ)=1
看了 关于介值定理、最值定理的理解...的网友还看了以下:
初二反比列函数在函数Y=k/x的图像进过点(2,a)和(-1,-4)问1:求函数表达式问2:确定a的 2020-03-31 …
已知函数(x∈R).(1)已知点在f(x)的图象上,判断其关于点对称的点是否仍在f(x)的图象上; 2020-05-02 …
甲数是乙数的5分之4,甲数比乙数少百分之【 】,乙数比甲数多百分之【 】甲数比乙数少5分之1,即甲 2020-05-16 …
指数函数在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移.在f(X)后加上一个数,图 2020-07-20 …
定义在R上的增函数y=f(x),对任意x,y∈R,都有f(x+y)=f(x)+f(y)(1)求f( 2020-07-20 …
给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是函数f′(x)的导数,若方程f″(x) 2020-07-31 …
函数在复平面内的图象应该是什么样子的……是要靠三维坐标吗?那么是否存在方程在复数集内无解我问的是函 2020-08-01 …
3道填空-|||①负数的相反数是正数,把这句话用符号可以表示为()②下列说法中,正确的是().A、无 2020-10-30 …
甲数是乙数的4/5,甲数是丙数的4/9,甲,乙,丙三数的比是():():()甲数是乙数的4/5.甲数 2020-11-20 …
数列概念问题数列a(n+1)-a(n)=常数这个数列是指a(n)是以这个常数为公差的等差数列还是是指 2020-12-26 …