早教吧作业答案频道 -->数学-->
已知函数f(x)=lnx-a(x-1)/(x>0)(1)讨论函数f(x)的单调性(2)当X大于等于1时,f(x)小于等于lnx已知函数f(x)=lnx-a(x-1)/(x>0)(1)讨论函数f(x)的单调性(2)当X大于等于1时,f(x)小于等于lnx/(x+1)恒成立,求a的
题目详情
已知函数f(x)=lnx-a(x-1)/(x>0)(1)讨论函数f(x)的单调性(2)当X大于等于1时,f(x)小于等于lnx
已知函数f(x)=lnx-a(x-1)/(x>0)
(1)讨论函数f(x)的单调性
(2)当X大于等于1时,f(x)小于等于lnx/(x+1)恒成立,求a的取值范围
已知函数f(x)=lnx-a(x-1)/(x>0)
(1)讨论函数f(x)的单调性
(2)当X大于等于1时,f(x)小于等于lnx/(x+1)恒成立,求a的取值范围
▼优质解答
答案和解析
(2)解
要x>=1时 f(x)=1时 f(x)小于等于lnx/(x+1)的最小值即可
为求的lnx/(x+1)的最小值,对lnx/(x+1)求导
得到 [lnx/(x+1)]`=[1+(1/x)-lnx]/[(1+x)^2]
分母(1+x)^2恒大于0 研究分子
1+(1/x)-lnx 在x属于1到正无穷的区间里,很明显1+(1/x)-lnx是先大于0后小于0
表明函数lnx/(x+1)在1到正无穷区间里先增后减.
则lnx/(x+1)的最小值应该在区间端点取得.
可以分别求出当x=1时 lnx/(x+1)=0
lim(x趋于正无穷) lnx/(x+1)=0 (这个结论可以用夹挤定理得到,过程并不难)
所以可以知道在1到正无穷 函数lnx/(x+1)的最小值为0
所以f(x)=lnx-a(x-1)=0)
当a=0 与题意不符 所以a必须大于0
此时有题目1中可以得到在a大于0的时候,f(x)在x=1/a处取得最大值,
带入x=1/a
得到f(a/1)=ln(1/a)-1+a
要x>=1时 f(x)=1时 f(x)小于等于lnx/(x+1)的最小值即可
为求的lnx/(x+1)的最小值,对lnx/(x+1)求导
得到 [lnx/(x+1)]`=[1+(1/x)-lnx]/[(1+x)^2]
分母(1+x)^2恒大于0 研究分子
1+(1/x)-lnx 在x属于1到正无穷的区间里,很明显1+(1/x)-lnx是先大于0后小于0
表明函数lnx/(x+1)在1到正无穷区间里先增后减.
则lnx/(x+1)的最小值应该在区间端点取得.
可以分别求出当x=1时 lnx/(x+1)=0
lim(x趋于正无穷) lnx/(x+1)=0 (这个结论可以用夹挤定理得到,过程并不难)
所以可以知道在1到正无穷 函数lnx/(x+1)的最小值为0
所以f(x)=lnx-a(x-1)=0)
当a=0 与题意不符 所以a必须大于0
此时有题目1中可以得到在a大于0的时候,f(x)在x=1/a处取得最大值,
带入x=1/a
得到f(a/1)=ln(1/a)-1+a
看了 已知函数f(x)=lnx-a...的网友还看了以下:
设定义在R上的函数f(x)是最小正周期2π的偶函数,f'(x)是f(x)的导函数,当X∈[0,π] 2020-04-12 …
设定义在R上的函数f(x)是最小正周期为2π的偶函数,f′(x)是f(x)的导函数,当x∈[0,π 2020-04-12 …
Y=X2-4TX+3在区间[1,2]求最小值F(X)Y=X2-4tx+3在区间[1,2]求最小值f 2020-04-27 …
若f(x)=x平方-x+b,且f(log(2)a)=b,log(2)f(a)=2{a>0且a不等于 2020-06-16 …
已知f(x)是定义域在R上的奇函数,当x大于等于0时f(X)=a-1,其中a大于0且a不等于1.( 2020-07-01 …
指数函数1.定义在R上的函数f(x)满足f(x).f(y)=f(x+y),且x大于0时,f(x)大 2020-07-22 …
已知f(x)的定义域为[1,4],求f(x+2)的定义域.答案如下:令t=x+2.∵f(x)的定义 2020-07-25 …
y=f(x)在(0,2)上是增函数且f(x+2)的图像关于y轴对称比较f(π/2)f(π/4f(大 2020-08-01 …
分段函数已知函数f(x)=x-2,(x大于等于2)-2,(x小于2)解不等式xf(x-1)小于10? 2020-12-08 …
已知函数f(x)的定义域为R,且满足f(x+2)=-f(x).若f(x)为奇函数,且当0小于等于x小 2021-01-31 …