早教吧作业答案频道 -->数学-->
已知函数f(x)=(a+1)lnx+ax2+1。(I)讨论函数f(x)的单调性;(Ⅱ)设a≤-2,证明:对任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|。
题目详情
已知函数f(x)=(a+1)lnx+ax 2 +1。 (I)讨论函数f(x)的单调性; (Ⅱ)设a≤-2,证明:对任意x 1 ,x 2 ∈(0,+∞),|f(x 1 )-f(x 2 )|≥4|x 1 -x 2 |。 |
▼优质解答
答案和解析
(Ⅰ)f(x)的定义域为 当a≥0时, ,故f(x)在 单调增加 当a≤-1时, ,故f(x)在 单调减少 当-1<a<0时,令 ,解得 则当 时, 时, 故f(x)在 单调增加,在 单调减少; (Ⅱ)不妨假设x 1 >x 2 由于a≤-2,故f(x)在(0,+∞)单调减少 所以|f(x 1 )-f(x 2 )|≥4|x 1 -x 2 |等价于 f(x 2 )-f(x 1 )≥4x 1 -4x 2 即f(x 2 )+4x 2 ≥f(x 1 )+4x 1 令g(x)=f(x)+4x,则 于是 从而g(x)在(0,+∞)单调减少,故g(x 1 )≤g(x 2 ) 即f(x 1 )+4x 1 ≤f(x 2 )+4x 2 故对任意x 1 ,x 2 ∈(0,+∞),|f(x 1 )-f(x 2 )|≥4|x 1 -x 2 |。 |
看了 已知函数f(x)=(a+1)...的网友还看了以下:
已知f(x)=x/(x-a),x不等于a,若a>o,且f(x)在(1,+∞)单调递减求a取值范围这 2020-05-13 …
若函数f(x)对于任意实数x都有f(x)=f(x-a)+f(x+a)(常数a为正整数),则f(x) 2020-05-16 …
函数f(x)=a^|x-b|(a>0,且a≠1)的图像关于直线X=b对称函数f(x)=a|x-b| 2020-05-22 …
已知f(x)=a^x-1/a^x(其中a>1,x∈R)(1)判断并证明f(x)的奇偶性与单调性已知 2020-06-14 …
f(x)在[a,b]上二阶可微,f(a)=f(b)=0,证任意x属于(a,b),一定存在ζ属于(a 2020-06-22 …
设f(x)是定义在R上的单调增函数,证明集合{x|对任意a>0,f(x+a)>f(x-a)}设f( 2020-07-29 …
一道中等难度的三角函数题(快点啊···)定义在R上的函数f(x)满足f(x+2)=-f(x),且当 2020-07-30 …
设函数f(x)=(a/3)x^3-(3/2)x^2+(a+1)x+1,a为实数.1.已知函数f(x 2020-08-03 …
函数周期问题设f(x)在R上有定义,任意R上的x,有f(x+T)=kf(x)(k,t为常数,T>0) 2020-11-16 …
1已知函数f(x)对任意x,y∈R总有f(x)+(y)=f(x+y)且当x〉0时,f(x)〈0,f( 2020-12-03 …