早教吧作业答案频道 -->数学-->
已知函数f(x)=(a+1)lnx+ax2+1。(I)讨论函数f(x)的单调性;(Ⅱ)设a≤-2,证明:对任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|。
题目详情
已知函数f(x)=(a+1)lnx+ax 2 +1。 (I)讨论函数f(x)的单调性; (Ⅱ)设a≤-2,证明:对任意x 1 ,x 2 ∈(0,+∞),|f(x 1 )-f(x 2 )|≥4|x 1 -x 2 |。 |
▼优质解答
答案和解析
(Ⅰ)f(x)的定义域为 当a≥0时, ,故f(x)在 单调增加 当a≤-1时, ,故f(x)在 单调减少 当-1<a<0时,令 ,解得 则当 时, 时, 故f(x)在 单调增加,在 单调减少; (Ⅱ)不妨假设x 1 >x 2 由于a≤-2,故f(x)在(0,+∞)单调减少 所以|f(x 1 )-f(x 2 )|≥4|x 1 -x 2 |等价于 f(x 2 )-f(x 1 )≥4x 1 -4x 2 即f(x 2 )+4x 2 ≥f(x 1 )+4x 1 令g(x)=f(x)+4x,则 于是 从而g(x)在(0,+∞)单调减少,故g(x 1 )≤g(x 2 ) 即f(x 1 )+4x 1 ≤f(x 2 )+4x 2 故对任意x 1 ,x 2 ∈(0,+∞),|f(x 1 )-f(x 2 )|≥4|x 1 -x 2 |。 |
看了 已知函数f(x)=(a+1)...的网友还看了以下:
已知函数f(x)=ax2+2ax+4(0<a<3),若x1<x2,x1+x2=1-a,则()A.f 2020-05-17 …
已知f(x)=根号(1+x^2)定义在区间[-1,1]上,设x1,x2∈[-1,1]且x1≠x2( 2020-05-22 …
如题怎样证明(x1+2/x1)-(x2+2/x2)大于0或者小于零怎样证明(x1+2/x1)-(x 2020-06-11 …
设f(x)在(0,正无穷)上有定义,x1>0,x2>0,若F(x)/x单调上升,求证,F(x1+x 2020-06-12 …
x1与x2分别是实系数方程ax2+bx+c=0和-ax2+bx+c=0的一个根,且x1≠x2,x1 2020-07-11 …
已知函数f(x)=ax2-ex(a∈R)在(0,+∞)上有两个零点为x1,x2(x1<x2)(1) 2020-07-26 …
X1,X2,X3,XN属于R+,求证X2^2/X1+X3^2/X2+.XN^2/XN-1+X1^2/ 2020-10-31 …
已知:关于x的一元二次方程ax2-2(a-1)x+a-2=0(a>0).(1)求证:方程有两个不相等 2020-10-31 …
已知一元二次方程ax2+bx+c=0两根为x1,x2,x2+x1=-ba,x2.x1=ca.如果抛物 2020-11-12 …
x1与x2分别是实系数方程ax2+bx+c=0和-ax2+bx+c=0的一个根,且x1≠x2,x1≠ 2020-11-28 …