早教吧作业答案频道 -->数学-->
已知函数f(x)=(a+1)lnx+ax2+1。(I)讨论函数f(x)的单调性;(Ⅱ)设a≤-2,证明:对任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|。
题目详情
已知函数f(x)=(a+1)lnx+ax 2 +1。 (I)讨论函数f(x)的单调性; (Ⅱ)设a≤-2,证明:对任意x 1 ,x 2 ∈(0,+∞),|f(x 1 )-f(x 2 )|≥4|x 1 -x 2 |。 |
▼优质解答
答案和解析
(Ⅰ)f(x)的定义域为 当a≥0时, ,故f(x)在 单调增加 当a≤-1时, ,故f(x)在 单调减少 当-1<a<0时,令 ,解得 则当 时, 时, 故f(x)在 单调增加,在 单调减少; (Ⅱ)不妨假设x 1 >x 2 由于a≤-2,故f(x)在(0,+∞)单调减少 所以|f(x 1 )-f(x 2 )|≥4|x 1 -x 2 |等价于 f(x 2 )-f(x 1 )≥4x 1 -4x 2 即f(x 2 )+4x 2 ≥f(x 1 )+4x 1 令g(x)=f(x)+4x,则 于是 从而g(x)在(0,+∞)单调减少,故g(x 1 )≤g(x 2 ) 即f(x 1 )+4x 1 ≤f(x 2 )+4x 2 故对任意x 1 ,x 2 ∈(0,+∞),|f(x 1 )-f(x 2 )|≥4|x 1 -x 2 |。 |
看了 已知函数f(x)=(a+1)...的网友还看了以下:
∵∴咋写?1:∵a=b(已知),c=d(已证)∴r=x()2.{a=b()∵{c=d(){r=q( 2020-04-26 …
已知函数f(x)=a㏑x+x2(a为实常数)(1)若a=-2,求证:函数f(x)在(1,+∽)上是 2020-05-13 …
已知函数f(x)=x|x减2m|,常数m属于R(1)设m=0,求证:函数f(x)递增(2)设m>0 2020-05-13 …
已知函数f(x)=x|x减2m|,常数m属于R(1)设m=0,求证:函数f(x)递增(2)设m>0 2020-05-13 …
已知函数f(x)=1/a-1/x(a>0,x>0).(1)求证:f(x)在(0,正无穷)上是单调递 2020-06-14 …
已知函数f(x)=In[(x+1)/(x-1)]《1》求函数的定义域,并证明f(x)=In[(x+ 2020-06-25 …
已知函数f(x)对任意实数x,y∈R,总有f(x)+f(y)=f(x+y)已知函数f(x)对任意实 2020-07-16 …
已知函数f(x)=2x平方-1.用定义证明f(x)在(-无穷,0]上是减函数;求函数f(x)在x属 2020-07-25 …
已知函数f(x)=ex-e-x-2x,x∈R(1)证明f(x)为奇函数,并在R上为增函数;(2)若 2020-07-26 …
(1)已知函数f(x)=2x−12x+1,判断函数的奇偶性,并加以证明.(2)已知函数f(x)=lg 2020-12-08 …