早教吧作业答案频道 -->数学-->
已知函数f(x)=(a+1)lnx+ax2+1。(I)讨论函数f(x)的单调性;(Ⅱ)设a≤-2,证明:对任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|。
题目详情
已知函数f(x)=(a+1)lnx+ax 2 +1。 (I)讨论函数f(x)的单调性; (Ⅱ)设a≤-2,证明:对任意x 1 ,x 2 ∈(0,+∞),|f(x 1 )-f(x 2 )|≥4|x 1 -x 2 |。 |
▼优质解答
答案和解析
(Ⅰ)f(x)的定义域为 当a≥0时, ,故f(x)在 单调增加 当a≤-1时, ,故f(x)在 单调减少 当-1<a<0时,令 ,解得 则当 时, 时, 故f(x)在 单调增加,在 单调减少; (Ⅱ)不妨假设x 1 >x 2 由于a≤-2,故f(x)在(0,+∞)单调减少 所以|f(x 1 )-f(x 2 )|≥4|x 1 -x 2 |等价于 f(x 2 )-f(x 1 )≥4x 1 -4x 2 即f(x 2 )+4x 2 ≥f(x 1 )+4x 1 令g(x)=f(x)+4x,则 于是 从而g(x)在(0,+∞)单调减少,故g(x 1 )≤g(x 2 ) 即f(x 1 )+4x 1 ≤f(x 2 )+4x 2 故对任意x 1 ,x 2 ∈(0,+∞),|f(x 1 )-f(x 2 )|≥4|x 1 -x 2 |。 |
看了 已知函数f(x)=(a+1)...的网友还看了以下:
为什么f(1-m)+f(1-m2)>0,即为f(1-m)>f(m2-1).求详解为什么f(1-m)+ 2020-03-30 …
1)已知f(x)是二次函数且f(0)=2,f(x+1)-f(x)=x-1,求f(x).(2)已知f 2020-05-13 …
如题函数f(x)对任意实数x满足条件f(x+1)=1/f(x)若f(1)=-5,则f[f(5)]= 2020-06-06 …
已知函数f(x)=-x+loga^1-x/1+x,则f(-1/5)+f(-1/4)+f(-1/3) 2020-06-09 …
对于正数x,规定f(x)=x/1+x,例如f(3)=3/(1+3)=3/4,f(1/3)=(1/3 2020-07-17 …
解:(1)f(x+1)=f(x)-f(x-1)=[f(x-1)-f(x-2)]-f(x-1)=-f 2020-07-19 …
在f(m,n)中,.m.n.f(m,n)均为非负整数且对任意的m,n有f(0,n)=n+1,f(m 2020-07-31 …
如果记y=x^2/1+x^2=f(x)并且f(x)表示当x=1时y的值,即f(1)=1^2/1+1^ 2020-10-31 …
f(x)在[0,1]上二阶可微且f'(0)=f'(1)=0,则存在c,使得f''(c)≥4|f(1) 2020-11-03 …
高中数学抽象函数已知定义在(-1,1)上的函数f(x)满足f(1/2)=1,且对任意x,y∈(-1, 2020-12-08 …