早教吧作业答案频道 -->数学-->
已知函数f(x)=(a+1)lnx+ax2+1。(I)讨论函数f(x)的单调性;(Ⅱ)设a≤-2,证明:对任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|。
题目详情
已知函数f(x)=(a+1)lnx+ax 2 +1。 (I)讨论函数f(x)的单调性; (Ⅱ)设a≤-2,证明:对任意x 1 ,x 2 ∈(0,+∞),|f(x 1 )-f(x 2 )|≥4|x 1 -x 2 |。 |
▼优质解答
答案和解析
(Ⅰ)f(x)的定义域为 当a≥0时, ,故f(x)在 单调增加 当a≤-1时, ,故f(x)在 单调减少 当-1<a<0时,令 ,解得 则当 时, 时, 故f(x)在 单调增加,在 单调减少; (Ⅱ)不妨假设x 1 >x 2 由于a≤-2,故f(x)在(0,+∞)单调减少 所以|f(x 1 )-f(x 2 )|≥4|x 1 -x 2 |等价于 f(x 2 )-f(x 1 )≥4x 1 -4x 2 即f(x 2 )+4x 2 ≥f(x 1 )+4x 1 令g(x)=f(x)+4x,则 于是 从而g(x)在(0,+∞)单调减少,故g(x 1 )≤g(x 2 ) 即f(x 1 )+4x 1 ≤f(x 2 )+4x 2 故对任意x 1 ,x 2 ∈(0,+∞),|f(x 1 )-f(x 2 )|≥4|x 1 -x 2 |。 |
看了 已知函数f(x)=(a+1)...的网友还看了以下:
设定义在R上的函数f(x)对任意x1、x2满足f(x1+x2)=f(x1)f(x2),且f(x)在 2020-05-17 …
已知定义在R上恒不为0的函数y=f(x),当x>0时,满足f(x)>1,且对于任意的实数x,y都有 2020-06-02 …
证明:设f(x)在[a,b]上连续,且恒为正,试证明:对任意的X1,X2属于(a,b).X1<X2 2020-06-03 …
奇偶函数的公式证明如果f(x)定义域关于原点对称,那么F(x)=f(x)+f(-x)是偶函数,G( 2020-06-07 …
函数f(x)满足条件1.a≤f(x)≤b,对于任意的x∈[a,b];2.存在常数k,使得对于任意的 2020-07-26 …
设x1、x2是区间D上的任意两点,若函数y=f(x)满足f(成立则称函数y=f(x)在区间D上下凸 2020-07-29 …
设x1、x2是区间D上的任意两点,若函数y=f(x)满足f(成立则称函数y=f(x)在区间D上下凸 2020-07-29 …
设a、b为常数,M={f(x)|f(x)=acosx+bsinx,x∈R};F:把平面上任意一点( 2020-07-30 …
高数证明题设f(x)在[0,+∞)内连续,且对任意实数c,方程f(x)=c在[0,+∞)内只有有高 2020-07-30 …
f(x)在[a,b]上连续(a,b)上可导,且f(a)=f(b)=0证明任取k属于R,存在ξ属于(a 2020-11-03 …