早教吧作业答案频道 -->数学-->
已知函数f(x)=(a+1)lnx+ax2+1。(I)讨论函数f(x)的单调性;(Ⅱ)设a≤-2,证明:对任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|。
题目详情
已知函数f(x)=(a+1)lnx+ax 2 +1。 (I)讨论函数f(x)的单调性; (Ⅱ)设a≤-2,证明:对任意x 1 ,x 2 ∈(0,+∞),|f(x 1 )-f(x 2 )|≥4|x 1 -x 2 |。 |
▼优质解答
答案和解析
(Ⅰ)f(x)的定义域为 当a≥0时, ,故f(x)在 单调增加 当a≤-1时, ,故f(x)在 单调减少 当-1<a<0时,令 ,解得 则当 时, 时, 故f(x)在 单调增加,在 单调减少; (Ⅱ)不妨假设x 1 >x 2 由于a≤-2,故f(x)在(0,+∞)单调减少 所以|f(x 1 )-f(x 2 )|≥4|x 1 -x 2 |等价于 f(x 2 )-f(x 1 )≥4x 1 -4x 2 即f(x 2 )+4x 2 ≥f(x 1 )+4x 1 令g(x)=f(x)+4x,则 于是 从而g(x)在(0,+∞)单调减少,故g(x 1 )≤g(x 2 ) 即f(x 1 )+4x 1 ≤f(x 2 )+4x 2 故对任意x 1 ,x 2 ∈(0,+∞),|f(x 1 )-f(x 2 )|≥4|x 1 -x 2 |。 |
看了 已知函数f(x)=(a+1)...的网友还看了以下:
2010年广东省深圳市联考数学题(1110:55:27) 2010年广东省深圳市联考定义在R上的函 2020-04-26 …
f(x)是定义在R上的函数,且对任意实数x,y都有f(x+y)=f(x)+f(y)-1成立,当f( 2020-06-02 …
设在全平面上有∂f(x,y)∂x<0,∂f(x,y)∂y>0,则保证不等式f(x1,y1)<f(x 2020-06-12 …
已知函数f(x)=x1+x2,x∈(0,1).(1)设x1,x2∈(0,1),证明:(x1-x2) 2020-07-10 …
设函数f(x)=x2+aln(x+1)(a为常数)(Ⅰ)若函数y=f(x)在区间[1,+∞)上是单 2020-07-14 …
C语言解方程问题#include"stdio.h"#include"math.h"floatf(f 2020-07-23 …
设a>0,f(x)=e^x/a+a/e^x是R上的偶函数,证明:f(x)在(0,+无穷)上是增函数 2020-08-01 …
1.f(x)为正比例函数,且f(-2)=-1.求f(x)等于多少?2.f(x)=2x+3,g(x+ 2020-08-03 …
对于任意定义在R上的函数f(x)若满足对任意x1,x2属于都有f[(x1+x2)/2]小于等于1/2 2020-11-19 …
已知函数f(x)=ax3+x2+bx(a,b∈R,且F(x)=f(x)+3ax2+2x+b为奇函数. 2020-12-08 …