早教吧作业答案频道 -->数学-->
已知函数f(x)=(a+1)lnx+ax2+1。(I)讨论函数f(x)的单调性;(Ⅱ)设a≤-2,证明:对任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|。
题目详情
已知函数f(x)=(a+1)lnx+ax 2 +1。 (I)讨论函数f(x)的单调性; (Ⅱ)设a≤-2,证明:对任意x 1 ,x 2 ∈(0,+∞),|f(x 1 )-f(x 2 )|≥4|x 1 -x 2 |。 |
▼优质解答
答案和解析
(Ⅰ)f(x)的定义域为 当a≥0时, ,故f(x)在 单调增加 当a≤-1时, ,故f(x)在 单调减少 当-1<a<0时,令 ,解得 则当 时, 时, 故f(x)在 单调增加,在 单调减少; (Ⅱ)不妨假设x 1 >x 2 由于a≤-2,故f(x)在(0,+∞)单调减少 所以|f(x 1 )-f(x 2 )|≥4|x 1 -x 2 |等价于 f(x 2 )-f(x 1 )≥4x 1 -4x 2 即f(x 2 )+4x 2 ≥f(x 1 )+4x 1 令g(x)=f(x)+4x,则 于是 从而g(x)在(0,+∞)单调减少,故g(x 1 )≤g(x 2 ) 即f(x 1 )+4x 1 ≤f(x 2 )+4x 2 故对任意x 1 ,x 2 ∈(0,+∞),|f(x 1 )-f(x 2 )|≥4|x 1 -x 2 |。 |
看了 已知函数f(x)=(a+1)...的网友还看了以下:
如果方程x^2+px+q=0的两个根是x1、x2,那么x1+x2=-p,x1.x2=q,请根据以上 2020-05-13 …
已知函数f(x)=lnx+x2+x.正实数x1,x2满足f(x1)+f(x2)+x1x2=0,则下 2020-05-17 …
已知函数f(x)=0.5x^2-lna(1)略(2)任取x1.x2,x1.x2大于1且x1不等于x 2020-05-17 …
ax2+bx+c=0(a不等于0)b2-4ac大于等于0①直接写出两个根x1,x2②求出x1+x2 2020-06-06 …
对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:①f(x1+x2)=f(x1) 2020-07-12 …
如果函数f(x)在[a,b]上是增函数,且f(x)不等于0,那么对于任意的x1,X2属于[a,b] 2020-07-30 …
证明函数单调性题目原题:判断并证明f(x)=x/x2=1在(0,无穷大)上的单调性设x1,x2再用 2020-08-01 …
已知函数f(x)=2^x-1,对于满足0<x1<x2的任意x1,x2,给出下列结论:(1)(x2-x 2020-10-31 …
对于函数f(x)=ex定义域中的任意的x1,x2(x1≠x2),有如下结论:(1)f(x1x2)=f 2020-10-31 …
设函数f(x)=-1/x,在区间(0,+∞)内讨论下列问题:(1)当x1=1及x2=3时,比较f(x 2020-12-23 …