早教吧作业答案频道 -->其他-->
已知函数f(x)=ax2-(2a+1)x+lnx,a∈R,(I)讨论函数f(x)的单调性;(II)设a<-1,证明:对任意x1,x2∈(2,+∞),|f(x1)-f(x2)|≥2|x1-x2|.
题目详情
已知函数 f(x)=ax2-(2a+1)x+lnx,a∈R,
(I)讨论函数f(x)的单调性;
(II)设a<-1,证明:对任意x1,x2∈(2,+∞),|f(x1)-f(x2)|≥2|x1-x2|.
(I)讨论函数f(x)的单调性;
(II)设a<-1,证明:对任意x1,x2∈(2,+∞),|f(x1)-f(x2)|≥2|x1-x2|.
▼优质解答
答案和解析
(Ⅰ)函数的定义域为(0,+∞).
f′(x)=2ax-(2a+1)+
=
=
,
①若a=0,则f′(x)=
,当0<x<1时,f′(x)>0,f(x)单调递增,当x>1时,f′(x)<0,f(x)单调递减;
②若0<a<
,令f′(x)>0,得0<x<1或x>
,令f′(x)<0,得1<x<
,
所以f(x)在(0,1),(
,+∞)上递增,在(1,
)上递减;
③若a=
,f′(x)=
≥0,f(x)在(0,+∞)上单调递增;
令f′(x)>0,得0<x<
,或x>1,令f′(x)<0,得
<x<1,
所以f(x)在(0,
),(1,+∞)上单调递增,在(
,1)上单调递减;
⑤若a<0,令f′(x)>0,得0<x<1,令f′(x)<0,得x>1,
所以f(x)在(0,1)上递增,在(1,+∞)上递减;
综上,a=0时,f(x)在(0,1)上单调递增,在(1,+∞)上递减;0<a<
时,f(x)在(0,1),(
,+∞)上递增,在(1,
)上递减;
a=
时,f(x)在(0,+∞)上单调递增;a>
时,f(x)在(0,
),(1,+∞)上单调递增,在(
,1)上单调递减;
a<0时,f(x)在(0,1)上递增,在(1,+∞)上递减;
(Ⅱ)|f(x1)-f(x2)|≥2|x1-x2|,即|
|≥2,所以有|f′(x)|≥2
f′(x)=2ax-(2a+1)+
1 |
x |
2ax2-(2a+1)x+1 |
x |
(2ax-1)(x-1) |
x |
①若a=0,则f′(x)=
-(x-1) |
x |
②若0<a<
1 |
2 |
1 |
2a |
1 |
2a |
所以f(x)在(0,1),(
1 |
2a |
1 |
2a |
③若a=
1 |
2 |
(x-1)2 |
x |
令f′(x)>0,得0<x<
1 |
2a |
1 |
2a |
所以f(x)在(0,
1 |
2a |
1 |
2a |
⑤若a<0,令f′(x)>0,得0<x<1,令f′(x)<0,得x>1,
所以f(x)在(0,1)上递增,在(1,+∞)上递减;
综上,a=0时,f(x)在(0,1)上单调递增,在(1,+∞)上递减;0<a<
1 |
2 |
1 |
2a |
1 |
2a |
a=
1 |
2 |
1 |
2 |
1 |
2a |
1 |
2a |
a<0时,f(x)在(0,1)上递增,在(1,+∞)上递减;
(Ⅱ)|f(x1)-f(x2)|≥2|x1-x2|,即|
f(x1)-f(x2) |
x1-x2 |
看了 已知函数f(x)=ax2-(...的网友还看了以下:
已知函数f(x)=(2a+1/a)-(1/a^x),x∈[m,n](m 2020-05-13 …
由曲线y=x2,y=x3围成的封闭面积为?若点p是曲线y=x2-lnx上任意一点,点p到直线y=x 2020-05-14 …
已知函数f(x)=2a+1/a-1/a2x,常数a>0.1.设m.n>0,证明:函数f(x)在[已 2020-05-16 …
已知函数f(x)=x^4-4x^3+4x^2-1(1)求单调区间和极值(2)若关于x的方程f(x) 2020-06-27 …
已知f(x)是定义在[-2,2]上的奇函数,且f(2)=3.若对任意的m,n∈[-2,2],m+n 2020-07-01 …
已知幂函数f(x)=(m2-5m+7)x-m-1(m∈R)为偶函数.(1)求f(12)的值;(2) 2020-07-21 …
已知函数f(x)=1/2ax2+2x,g(x)=Inx.是否存在正实数a,使得函数T(x)=g(x 2020-07-22 …
设fx是定义在r上是奇函数,且为减函数,且有f(2a²+a+1)+f(-3a²+2a-1) 2020-08-01 …
请教几个函数问题1.设函数f(x)=(2a-1)x+b是R上的减函数,则有实数a的取值范围?2.50 2020-12-31 …
已知函数f(x)=1/2ax^2+2x,g(x)=lnx(1)若y=f(x)在[1,+无穷]上是单调 2020-12-31 …