早教吧作业答案频道 -->其他-->
已知函数f(x)=ax2-(2a+1)x+lnx,a∈R,(I)讨论函数f(x)的单调性;(II)设a<-1,证明:对任意x1,x2∈(2,+∞),|f(x1)-f(x2)|≥2|x1-x2|.
题目详情
已知函数 f(x)=ax2-(2a+1)x+lnx,a∈R,
(I)讨论函数f(x)的单调性;
(II)设a<-1,证明:对任意x1,x2∈(2,+∞),|f(x1)-f(x2)|≥2|x1-x2|.
(I)讨论函数f(x)的单调性;
(II)设a<-1,证明:对任意x1,x2∈(2,+∞),|f(x1)-f(x2)|≥2|x1-x2|.
▼优质解答
答案和解析
(Ⅰ)函数的定义域为(0,+∞).
f′(x)=2ax-(2a+1)+
=
=
,
①若a=0,则f′(x)=
,当0<x<1时,f′(x)>0,f(x)单调递增,当x>1时,f′(x)<0,f(x)单调递减;
②若0<a<
,令f′(x)>0,得0<x<1或x>
,令f′(x)<0,得1<x<
,
所以f(x)在(0,1),(
,+∞)上递增,在(1,
)上递减;
③若a=
,f′(x)=
≥0,f(x)在(0,+∞)上单调递增;
令f′(x)>0,得0<x<
,或x>1,令f′(x)<0,得
<x<1,
所以f(x)在(0,
),(1,+∞)上单调递增,在(
,1)上单调递减;
⑤若a<0,令f′(x)>0,得0<x<1,令f′(x)<0,得x>1,
所以f(x)在(0,1)上递增,在(1,+∞)上递减;
综上,a=0时,f(x)在(0,1)上单调递增,在(1,+∞)上递减;0<a<
时,f(x)在(0,1),(
,+∞)上递增,在(1,
)上递减;
a=
时,f(x)在(0,+∞)上单调递增;a>
时,f(x)在(0,
),(1,+∞)上单调递增,在(
,1)上单调递减;
a<0时,f(x)在(0,1)上递增,在(1,+∞)上递减;
(Ⅱ)|f(x1)-f(x2)|≥2|x1-x2|,即|
|≥2,所以有|f′(x)|≥2
f′(x)=2ax-(2a+1)+
1 |
x |
2ax2-(2a+1)x+1 |
x |
(2ax-1)(x-1) |
x |
①若a=0,则f′(x)=
-(x-1) |
x |
②若0<a<
1 |
2 |
1 |
2a |
1 |
2a |
所以f(x)在(0,1),(
1 |
2a |
1 |
2a |
③若a=
1 |
2 |
(x-1)2 |
x |
令f′(x)>0,得0<x<
1 |
2a |
1 |
2a |
所以f(x)在(0,
1 |
2a |
1 |
2a |
⑤若a<0,令f′(x)>0,得0<x<1,令f′(x)<0,得x>1,
所以f(x)在(0,1)上递增,在(1,+∞)上递减;
综上,a=0时,f(x)在(0,1)上单调递增,在(1,+∞)上递减;0<a<
1 |
2 |
1 |
2a |
1 |
2a |
a=
1 |
2 |
1 |
2 |
1 |
2a |
1 |
2a |
a<0时,f(x)在(0,1)上递增,在(1,+∞)上递减;
(Ⅱ)|f(x1)-f(x2)|≥2|x1-x2|,即|
f(x1)-f(x2) |
x1-x2 |
看了 已知函数f(x)=ax2-(...的网友还看了以下:
已知定义域为R的函数f(x)满足f[f(x)-x^2+x]=f(x)-x^2+x,设有且仅有一个实 2020-05-13 …
已知x1≠1,x1>0,xn+1=xn(xn^2+3)/(3xn^2+1)(n∈N),求证:数列{ 2020-06-03 …
英语翻译1.对...满意2.冲出去3.划掉4.作为报答5.谋生6.收到投诉7.打盹8.赢得决赛9. 2020-06-29 …
已知A={x|x=a+(根号2)*b,a,b属于N}(1)对任意x1,x2属于A,证明x1+x2属 2020-07-29 …
如果对任意x1,x2∈R,都有f[(x1+x2)/2]≤1/2[f(x1)+f(x2),则称函数f 2020-07-29 …
极限问题,设函数f在[0,+∞)单调非负,并且满足并且满足limf(2x)/f(x)=1,求证对任 2020-07-30 …
设f(x)是R上的函数,对任意x,y∈R都有f(x+y)=f(x)·f(y),且当x>0时,0<f 2020-08-03 …
已知函数f(x)=2^x-1,对于满足0<x1<x2的任意x1,x2,给出下列结论:(1)(x2-x 2020-10-31 …
对于任意定义在R上的函数f(x)若满足对任意x1,x2属于都有f[(x1+x2)/2]小于等于1/2 2020-11-19 …
基本词组。1.对······满意2.一件印象深刻的事3.一个稳重的有礼貌的男孩4.和······打架 2020-12-02 …