早教吧作业答案频道 -->其他-->
用数学归纳法证明:(n+1)(n+2)(n+3)+.+(n+n)=(2^n)*1*3*.(2n-1)
题目详情
用数学归纳法证明:(n+1)(n+2)(n+3)+.+(n+n)=(2^n)*1*3*.(2n-1)
▼优质解答
答案和解析
n=1时,2=2成立
假设n=k时,(k+1)(k+2)(k+3).(k+k)=(2^k)*1*3*.(2k-1)成立
则当n=k+1时,
(k+2)(k+3).(k+1+k-1)(k+1+k)(k+1+k+1)
=(k+2)(k+3).(k+k)(k+1+k)2(k+1)
=(2^k)*1*3*.(2k-1)*2*(2k+1)
=(2^k+1)*1*3*.(2k-1)(2k+1)
所以:(n+1)(n+2)(n+3).(n+n)=(2^n)*1*3*.(2n-1)
好辛苦 给分吧
假设n=k时,(k+1)(k+2)(k+3).(k+k)=(2^k)*1*3*.(2k-1)成立
则当n=k+1时,
(k+2)(k+3).(k+1+k-1)(k+1+k)(k+1+k+1)
=(k+2)(k+3).(k+k)(k+1+k)2(k+1)
=(2^k)*1*3*.(2k-1)*2*(2k+1)
=(2^k+1)*1*3*.(2k-1)(2k+1)
所以:(n+1)(n+2)(n+3).(n+n)=(2^n)*1*3*.(2n-1)
好辛苦 给分吧
看了 用数学归纳法证明:(n+1)...的网友还看了以下:
八年级数学问题n+3与2n-6是一个正数的平方根,则n等于A.1B.9C.I或9D.不确定我的答案 2020-04-11 …
f(n)=1/(n+1)+1/(n+2)+1/(n+3)+……+1/(2n),(n∈N+),f(k 2020-04-27 …
计算:1:(-x^n)^2+(x^2)^n-x^n*x^22:[(-n)^2]^5/[(-n*n^ 2020-05-22 …
解一道高一数列题a1=2,a(n+1)-a(n)=3×2^(2n-1)用累加法求数列{an}的通项 2020-06-02 …
已知数列{an}得通项公式an=1/n+1+1/n+2+1/n+3+...+1/2n(n∈n*). 2020-07-26 …
若T(n)=(1/n)+(1/n+2)+(1/n+3)…+1/2n,则T(n+1)= 2020-07-26 …
若T(n)=(1/n)+(1/n+2)+(1/n+3)…+1/2n,则T(n+1)-T(n)= 2020-07-26 …
设an=1/(n+1)+1/(n+2)+1/(n+3)+...+1/(2n-1)+1/(2n),求 2020-07-29 …
一元多项式在复数域内分解成一次因式的乘积(1)x^n-C(2n,2)x^(n-1)+C(2n,4) 2020-08-03 …
lim[1/(n+1)+1/(n+2)+1/(n+3)+……+1/2n]n趋近无穷大把上面的式子转化 2020-10-31 …