早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在平面直角坐标系中,直线y=kx+n与抛物线y=ax2+bx-3交于A(-2,0)、B(4,3)两点,点P是直线AB下方的抛物线上的一动点(不与点A、B重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于

题目详情
如图,在平面直角坐标系中,直线y=kx+n与抛物线y=ax2+bx-3交于A(-2,0)、B(4,3)两点,点P是直线AB下方的抛物线上的一动点(不与点A、B重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.
(1)求直线与抛物线的解析式.
(2)设点P的横坐标为m.
①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;
②连结PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积比为9:10?若存在,直接写出m的值;若不存在,请说明理由.
▼优质解答
答案和解析

解得:
∴直线解析式为y=x+1;
将A(-2,0),B(4,3)代入抛物线解析式y=ax2+bx-3得:
解得:
∴抛物线解析式为y=x2-x-3;

(2)①∵PC∥y轴,
∴∠ACP=∠AEO,
对于直线y=x+1,令y=0,得到x=-2,即AO=2,令x=0,得到y=1,即OE=1,
根据勾股定理得到AE=
∴sin∠ACP=sin∠AEO==
将x=m代入直线解析式得:y=m+1;代入抛物线解析式得:y=m2-m-3,
∴CP=(m+1)-(m2-m-3)=-m2+m+4,
∴DP=CP•sin∠ACP=(-m2+m+4)×=-(m-1)2+
∵-<0,
∴当m=1时,DP的最大值为
②存在,
过D作DF⊥CP,过B作BG⊥PQ,交PC延长线与点Q,
∵sin∠ACP=
∴cos∠ACP=
在Rt△PDF中,DF=DP•sin∠DPC=DP•cos∠ACP=×(-m2+m+4)×=-(m2+2m-8),
又∵BG=4-m,
====
==时,解得:m=
==时,解得:m=