早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(1)问题发现:如图1,在△ABC中,分别以AB、AC为斜边,向△ABC的形外作等腰直角三角形,直角的顶点分别为D、E,点F、M、G分别为AB、BC、AC边的中点.填空:①四边形AFMG的形状是;

题目详情
(1)问题发现:
如图1,在△ABC中,分别以AB、AC为斜边,向△ABC的形外作等腰直角三角形,直角的顶点分别为D、E,点F、M、G分别为AB、BC、AC边的中点.
填空:①四边形AFMG的形状是___;
         ②△DFM和△MGE之间的关系是___.
(2)拓展探究:
如图2,在△ABC中,分别以AB、AC为底边,向△ABC的形外作等腰三角形,顶角的顶点分别为D、E,且∠BAD+∠CAE=90°,点F、M、G分别为AB、BC、AC边的中点,试判断△DFM和⊥MGE之间的关系,并加以说明.
(3)问题解决:
在(2)的条件下,若AD=5,AB=6,△DFM的面积为32,直接写出△MGE的面积.作业帮
▼优质解答
答案和解析
(1)①∵BF=AF,BM=MC,
∴FM∥AC,同理MG∥AB,
∴四边形AFMG是平行四边形,
故答案为:平行四边形;
②∵∠BDA=90°,DF是AB边上的中线,
∴DF=AF.
∵四边形AFMG是平行四边形,
∴MG=AF,∠AFM=∠AGM.
∴DF=MG,∠BFM=∠MGC.
∵∠AEC=90°,EG是AC边上的中线,
∴GE=AG.
∵四边形AFMG是平行四边形,
∴AG=FM.
∴GE=FM.
∵DA=DB,F为AB的中点,
∴∠DFB=90°.
同理:∠EGC=90°.
∴∠DFB+∠BFM=∠EGC+∠MGC,即∠DFM=∠EGM.
在△DFM和△MGE中,
DF=MG 
∠DFM=∠EGM 
FM=EG 

∴△DFM≌△MGE(SAS);
故答案为:△DFM≌△MGE.

(2)△DFM∽△MGE,理由如下:
∵△ADB和△ACE都是等腰三角形,且F、G为AB、AC的中点,
∴∠DFB=∠EGC=90°.
∵点F、M、G分别为AB、BC、AC边的中点,
∴FM∥AC,MG∥AB,FM=
1
2
AC=AG    MG=
1
2
AB=AF.
∴∠BFM=∠BAC=∠MGC.
∴∠BFM+90°=∠MGC+90°,
即∠DFM=∠MGE.
∵∠BAD+∠CAE=90°,∠CAE+∠AEG=90°,
∴∠BAD=∠AEG.
∴tan∠BAD=tan∠AEG.
DF
AF
=
AG
GE
,即
DF
MG
=
FM
GE

又∵∠DFM=∠MGE,
∴△DFM∽△MGE.

(3)∵AD=5,AB=6,
∴AF=3,MG=3,MG=AF=3.
∴在Rt△ADF中,DF=
AD2-AF2
=
52-32
=4.
∵由①知△DFM∽△MGE,且△DFM的面积为32,
S△MGE
S△DFM
=(
MG
DF
2=(
3
4
2=
9
16

∴S△MGE=32×
9
16
=18.