早教吧作业答案频道 -->数学-->
求人帮忙写下高一Sin,Cos,tan的有关公式和有关的规律有时间的,请帮下吧..后悔当初不学了..你的答案可能会影响我的人生...
题目详情
求人帮忙写下高一Sin,Cos,tan的有关公式和有关的规律
有时间的,请帮下吧..后悔当初不学了..你的答案可能会影响我的人生...
有时间的,请帮下吧..后悔当初不学了..你的答案可能会影响我的人生...
▼优质解答
答案和解析
平方和关系
sin^2α+cos^2α=1
积的关系
sinα=tanα×cosα
cosα=cotα×sinα
tanα=sinα×secα
倒数的关系
sinα ·cscα=1
商的关系
sinα/cosα=tanα=secα/cscα
和角公式
sin(α±β)=sinα·cosβ±cosα·sinβ
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
倍角公式,半角公式
sin(2α)=2sinα·cosα=2/(tanα+cotα)
sin(3α)=3sinα-4sin³(α)=4sinα·sin(60+α)sin(60-α)
sin(α/2)=±√((1-cosα)/2)
常用的诱导公式有以下几组:
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
诱导公式记忆口诀
※规律总结※
上面这些诱导公式可以概括为:
对于k·π/2±α(k∈Z)的个三角函数值,
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.
(奇变偶不变)
然后在前面加上把α看成锐角时原函数值的符号.
(符号看象限)
sin^2α+cos^2α=1
积的关系
sinα=tanα×cosα
cosα=cotα×sinα
tanα=sinα×secα
倒数的关系
sinα ·cscα=1
商的关系
sinα/cosα=tanα=secα/cscα
和角公式
sin(α±β)=sinα·cosβ±cosα·sinβ
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
倍角公式,半角公式
sin(2α)=2sinα·cosα=2/(tanα+cotα)
sin(3α)=3sinα-4sin³(α)=4sinα·sin(60+α)sin(60-α)
sin(α/2)=±√((1-cosα)/2)
常用的诱导公式有以下几组:
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
诱导公式记忆口诀
※规律总结※
上面这些诱导公式可以概括为:
对于k·π/2±α(k∈Z)的个三角函数值,
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.
(奇变偶不变)
然后在前面加上把α看成锐角时原函数值的符号.
(符号看象限)
看了 求人帮忙写下高一Sin,Co...的网友还看了以下:
经市场调查,某商品在近100天内,其销售量和价格均为t的函数,且销售量近似地满足关系:g(t)=- 2020-05-13 …
已知:有一个数列T,T[n]=1+(j=0到n-1)累计加T[j];且T[0]=1.求证:T[n] 2020-05-14 …
已知:有一个数列T,T[n]=1+(j=0到n-1)累计加T[j];且T[0]=1.求证:T[n] 2020-05-14 …
为什么当(n->∞)有t=[nln(1+1/n)-1]->0 2020-06-08 …
T(n)=2T(n-1)+n,n>0;T(0)=0.求T(n)谢谢了,大神帮忙啊T(n)=2T(n 2020-06-08 …
二项式展开式系数最大的问题如题老师说的方法是用T(n)>T(n+1)T(n)>T(n-1)来求得n 2020-07-31 …
数列an满足递推式(a(n+2))*an-(a(n+1))^2=(t^n)*(t-1),a1=1, 2020-08-01 …
英语语法中,是不是所有s的后面有t读d,k读g,p读b? 2020-10-30 …
已知(1+1/x)^x=e,e^x-1=x,limx→1(x+x^2+...+x^n-n)/(x-1 2020-10-31 …
英语语法中,是不是所有s的后面有t读d,k读g,p读b? 2020-11-07 …