早教吧作业答案频道 -->其他-->
如图,在平面直角坐标系内,点0为坐标原点,经过点A(2,6)的直线交x轴负半轴于点B,交y轴于点C,OB=OC,直线AD交x轴正半轴于点D,若△ABD的面积为27.(1)求直线AD的解析式;(2)横坐
题目详情
如图,在平面直角坐标系内,点0为坐标原点,经过点A(2,6)的直线交x轴负半轴于点B,交y轴于点C,OB=OC,直线AD交x轴正半轴于点D,若△ABD的面积为27.
(1)求直线AD的解析式;
(2)横坐标为m的点P在AB上(不与点A,B重合),过点P作x轴的平行线交AD于点E,设PE的长为y,求y与m之间的函数关系式并直接写出相应的m的取值范围;
(3)在(2)的条件下,在x轴上是否存在点F,使△PEF为等腰直角三角形?若存在求出点F的坐标,若不存在,请说明理由.
(1)求直线AD的解析式;
(2)横坐标为m的点P在AB上(不与点A,B重合),过点P作x轴的平行线交AD于点E,设PE的长为y,求y与m之间的函数关系式并直接写出相应的m的取值范围;
(3)在(2)的条件下,在x轴上是否存在点F,使△PEF为等腰直角三角形?若存在求出点F的坐标,若不存在,请说明理由.
▼优质解答
答案和解析
(1)过点A作AG⊥x轴于点G,
∵A(2,6),
∴OG=2,AG=6.
∵OB=OC,
∴∠OBC=∠OCB.
∵∠COB=90°,∠COB+∠OBC+∠OCB=180°,
∴∠OBC=∠OCB=45°.
∵∠COB=∠AGB=90°,
∴CO∥AG.
∴∠BAG=∠OCB=∠OBC═45°
∴BG=AG=6,
∴OB=4,
∴B(-4,0)
∵S△ABD=
BD•AG=27,
∴BD=9
∴OD=5,
∴D(5,0)
设直线AD的解析式为y=kx+b
∵A(2,6)D(5,0),
∴
,
解得:
,
∴直线AD的解析式为y=-2x+10;
(2)过点P作PH⊥BD,点H为垂足
∠BPH=180°-∠ABO-∠PHB=45°
∴∠BPH=∠PBH,
∴PH=HB.
设AB的解析式为:y=kx+b,由题意,得
,
解得:
∵A(2,6),
∴OG=2,AG=6.
∵OB=OC,
∴∠OBC=∠OCB.
∵∠COB=90°,∠COB+∠OBC+∠OCB=180°,
∴∠OBC=∠OCB=45°.
∵∠COB=∠AGB=90°,
∴CO∥AG.
∴∠BAG=∠OCB=∠OBC═45°
∴BG=AG=6,
∴OB=4,
∴B(-4,0)
∵S△ABD=
1 |
2 |
∴BD=9
∴OD=5,
∴D(5,0)
设直线AD的解析式为y=kx+b
∵A(2,6)D(5,0),
∴
|
解得:
|
∴直线AD的解析式为y=-2x+10;
(2)过点P作PH⊥BD,点H为垂足
∠BPH=180°-∠ABO-∠PHB=45°
∴∠BPH=∠PBH,
∴PH=HB.
设AB的解析式为:y=kx+b,由题意,得
|
解得:
作业帮用户
2017-10-03
|
看了 如图,在平面直角坐标系内,点...的网友还看了以下:
已知角α的终边为射线OP①若点P的坐标为(sin150°,cos150°),求tanα②若OP在直 2020-04-27 …
(12分)已知双曲线C以椭圆的焦点为顶点,顶点为焦点(1)求双曲线C的标准方程;(2)若双曲线C的 2020-05-13 …
曲线C:y^2=x+1和定点A(3,1),B为曲线C上任意点.若AP向量=2倍的PB向量,当点B在 2020-05-16 …
圆和直线方程已知直线l的方程为x-y+2根号2=0,圆的方程为x+y=1(1)若Q为圆O上任一 2020-05-17 …
已知圆M的方程为x^2+(y-2)^2=1,直线l的方程为x-2y=0,点P在直线l上,过P点作圆 2020-06-14 …
已知顶点在原点,焦点在x轴上的抛物线被直线Y=2x+1截得的玄长为√15若抛物线与直线y=2x-5 2020-07-02 …
已只直线y=1/2x与双曲线y=k/x(k>0)交A,B2点,且A的横坐标为4求1k的值2若双曲线 2020-07-12 …
已知圆,点P为直线l:x=4上的动点.(I)若从P到圆O的切线长为,求P点的坐标以及两条切线所夹劣 2020-07-22 …
已知AB是抛物线x2=2py(p>0)的任一弦,F为抛物线的焦点,l为准线.m为过A点且以为方向向 2020-07-31 …
在直角坐标系中,曲线的参数方程为(其中为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系, 2020-07-31 …