早教吧 育儿知识 作业答案 考试题库 百科 知识分享

高数请教一道关于多元复合函数微分的证明题可微函数f(x,y,z)满足方程:xfx’+yfy’+zfz’=nf(x,y,z)证明:f(x,y,z)是n次齐次函数即:f(tx,ty,tz)=t^nf(x,y,z).疑问一ftx’、fty’、ftz’是否分别

题目详情
高数 请教一道关于多元复合函数微分的证明题
可微函数f(x,y,z)满足方程:xfx’+yfy’+zfz’=nf(x,y,z)
证明:f(x,y,z)是n次齐次函数即:f(tx,ty,tz)=t^n f(x,y,z).
疑问一 ftx’、fty’ 、ftz’是否分别表示为函数f(tx,ty,tz)对tx,ty,tz所求的偏导数?
疑问二 一元的 x,y,z换元变成包含两个变量的tx,ty,tz对此欧拉齐次方程的等式没有影响吗?为什么?
▼优质解答
答案和解析
xfx’+yfy’+zfz’=nf(x,y,z)
t(xftx’+yfty’+zftz’)=nf(tx,ty,tz)
df(tx,ty,tz)/dt=xftx’+yfty’+zftz'=[nf(tx,ty,tz)]/t
df/f=ndt/t
f(tx,ty,tz)=Ct^n
当t=1时 f(x,y,z)=C
即 f(tx,ty,tz)=t^n f(x,y,z)
看了 高数请教一道关于多元复合函数...的网友还看了以下: