早教吧作业答案频道 -->数学-->
已知a+b+c=1,a^2+b^2+c^2=2,a^3+b^3+c^3=3,求a^4+b^4+c^4韦达定理
题目详情
已知a+b+c=1,a^2+b^2+c^2=2,a^3+b^3+c^3=3,求a^4+b^4+c^4
韦达定理
韦达定理
▼优质解答
答案和解析
(a+b+c)²
=a²+b²+c²+2ab+2ac+2bc
=1
得:ab+ac+bc=-1/2;
(a+b+c)³
=a³+b³+c³+3(ab+ac+bc)(a+b+c)-3abc
=1
得:abc=1/6;
所以:
(a+b+c)^4
=a^4+b^4+c^4+4a^3b+4a^3c+4b^3a+4b^3c+4c^3a+4c^3b+6a^2b^2+6a^c^2+6b^2c^2+12a^2bc+12ab^2c+12abc^2
=1
即:
4(ab+ac+bc)(a²+b²+c²)+3(a²+b²+c²)²+8(a+b+c)abc-2(a^4+b^4+c^4)
=1
最后得:a^4+b^4+c^4=25/6.
=a²+b²+c²+2ab+2ac+2bc
=1
得:ab+ac+bc=-1/2;
(a+b+c)³
=a³+b³+c³+3(ab+ac+bc)(a+b+c)-3abc
=1
得:abc=1/6;
所以:
(a+b+c)^4
=a^4+b^4+c^4+4a^3b+4a^3c+4b^3a+4b^3c+4c^3a+4c^3b+6a^2b^2+6a^c^2+6b^2c^2+12a^2bc+12ab^2c+12abc^2
=1
即:
4(ab+ac+bc)(a²+b²+c²)+3(a²+b²+c²)²+8(a+b+c)abc-2(a^4+b^4+c^4)
=1
最后得:a^4+b^4+c^4=25/6.
看了 已知a+b+c=1,a^2+...的网友还看了以下:
已知向量a,b,c满足|a|=1,|a-b|=|b|,(a-c)(b-c)=0.若对每一确定的b, 2020-05-16 …
x-5分之4=4分之1,3分之1+x=2分之1,解方程有下列10个数:17、12、15、17、10 2020-05-16 …
一个三角形中的不等式.s.R.r分别为三角形的面积外接圆半径内接圆半径,求证a^4+b^4+c^4 2020-06-06 …
1.已知a+b+c=0,a^2+b^2+c^=1,求:①ab+bc+ac的值②a^4+b^4+c^ 2020-07-09 …
A,B,C,D四个数的和为59,问A^2+B^2+C^2+D^2,A^3+B^3+C^3+D^3, 2020-07-28 …
a,b,c是两两不等实数,求经过下列每个点直线的倾斜角(1)A(a,c),B(b,c)(2)C(a 2020-08-01 …
已知集合A={x|x2+ax-12=0},B={x|x2+bx+c=0},且A不等于B,A并B={ 2020-08-02 …
对于同一平面内的三条直线abc给出下列五个判断(1)a‖b(2)b‖c(3)a⊥b(4)a∥c(5) 2020-11-02 …
a^4(b^2-c^2)+b^4(c^2-a^2)+c^4(a^2-b^2)b^2这个是b是2次方b 2020-11-26 …
已知a.b.c互不相等,(a-c)^2=4(b-c)(c-b).求证:a-b=b-csorry,真的 2020-12-01 …