早教吧 育儿知识 作业答案 考试题库 百科 知识分享

柯西不等式三角形式的证明即√(a^2+b^2)+√(c^2+d^2)≥√[(a+c)^2+(b+d)^2]等号成立条件:ad=bc注:“√”表示平方根,

题目详情
柯西不等式三角形式的证明
即√(a^2+b^2)+√(c^2+d^2)≥√[(a+c)^2+(b+d)^2]
  等号成立条件:ad=bc
  注:“√”表示平方根,
▼优质解答
答案和解析
你的三角形式错了吧.柯西不等式的三角形式是这样的.√(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]
证明:[√(a^2+b^2)+√(c^2+d^2]^2=a^2+b^2+c^2+d^2+2*√(a^2+b^2)*√(c^2+d^2) ≥a^2+b^2+c^2+d^2+2*|a*c+b*d| 注:| |表示绝对值.*表示乘 ≥a^2+b^2+c^2+d^2-2(a*c+b*d) =a^2-2*a*c+c^2+b^2-2bd+d^2 =(a-c)^2+(b-d)^2 两边开根号即得 √(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]