早教吧作业答案频道 -->其他-->
设集合W是满足下列两个条件的无穷数列{an}的集合:①;②an≤M,其中n∈N*,M是与n无关的常数.(1)若{an}是等差数列,Sn是其前n项的和,a3=4,S3=18,证明:{Sn}∈W(2)设数列{bn}的通项为bn=
题目详情
设集合W是满足下列两个条件的无穷数列{an}的集合:
①;②an≤M,其中n∈N*,M是与n无关的常数.
(1)若{an}是等差数列,Sn是其前n项的和,a3=4,S3=18,证明:{Sn}∈W
(2)设数列{bn}的通项为bn=5n-2n,且{bn}∈W,求M的取值范围;
(3)设数列{cn}的各项均为正整数,且{cn}∈W,证明:cn<cn+1.
①;②an≤M,其中n∈N*,M是与n无关的常数.
(1)若{an}是等差数列,Sn是其前n项的和,a3=4,S3=18,证明:{Sn}∈W
(2)设数列{bn}的通项为bn=5n-2n,且{bn}∈W,求M的取值范围;
(3)设数列{cn}的各项均为正整数,且{cn}∈W,证明:cn<cn+1.
▼优质解答
答案和解析
(1)设等差数列{an}的公差是d,则a1+2d=4,3a1+3d=18,解得a1=8,d=-2,
所以Sn=na1+d=-n2+9n(2分)
由-Sn+1=[(-n2+9n)-(n+2)2+9(n+2)+2(n+1)2-18(n+1)]=-1<0
得<Sn+1,适合条件①;
又Sn=-n2+9n=-+,所以当n=4或5时,Sn取得最大值20,即Sn≤20,适合条件②
综上,{Sn}∈W(4分)
(2)因为bn+1-bn=5(n+1)-2n+1-5n+2n=5-2n
所以当n≥3时,bn+1-bn<0,此时数列{bn}单调递减;
当n=1,2时,bn+1-bn>0,即b1<b2<b3,因此数列{bn}中的最大项是b3=7
所以M≥7(8分)
(3)假设存在正整数k,使得ck>ck+1成立
由数列{cn}的各项均为正整数,可得ck+1≤ck-1
因为≤ck+1,所以ck+2≤2ck+1-ck≤2(ck-1)-ck=ck--2
由ck+2≤2ck+1-ck及ck>ck+1,得ck+2<2ck+2-ck+1=ck+1,故ck+2≤ck+1-1
因为≤ck+2,所以ck+3≤2ck+2-ck+1≤2(ck+1-1)-ck+1=ck+1-2≤ck-3
依此类推,可得ck+m≤ck-m(m∈N*)
设ck=p(p∈N*),则当m=p时,有ck+p≤ck-p=0
这显然与数列{cn}的各项均为正整数矛盾!
所以假设不成立,即对于任意n∈N*,都有cn≤cn+1成立.(16分)
所以Sn=na1+d=-n2+9n(2分)
由-Sn+1=[(-n2+9n)-(n+2)2+9(n+2)+2(n+1)2-18(n+1)]=-1<0
得<Sn+1,适合条件①;
又Sn=-n2+9n=-+,所以当n=4或5时,Sn取得最大值20,即Sn≤20,适合条件②
综上,{Sn}∈W(4分)
(2)因为bn+1-bn=5(n+1)-2n+1-5n+2n=5-2n
所以当n≥3时,bn+1-bn<0,此时数列{bn}单调递减;
当n=1,2时,bn+1-bn>0,即b1<b2<b3,因此数列{bn}中的最大项是b3=7
所以M≥7(8分)
(3)假设存在正整数k,使得ck>ck+1成立
由数列{cn}的各项均为正整数,可得ck+1≤ck-1
因为≤ck+1,所以ck+2≤2ck+1-ck≤2(ck-1)-ck=ck--2
由ck+2≤2ck+1-ck及ck>ck+1,得ck+2<2ck+2-ck+1=ck+1,故ck+2≤ck+1-1
因为≤ck+2,所以ck+3≤2ck+2-ck+1≤2(ck+1-1)-ck+1=ck+1-2≤ck-3
依此类推,可得ck+m≤ck-m(m∈N*)
设ck=p(p∈N*),则当m=p时,有ck+p≤ck-p=0
这显然与数列{cn}的各项均为正整数矛盾!
所以假设不成立,即对于任意n∈N*,都有cn≤cn+1成立.(16分)
看了 设集合W是满足下列两个条件的...的网友还看了以下:
定义在R上的函数y=f(x),满足f(x+2)=-1/f(x),则().A.f(x)不是周期函数B 2020-06-03 …
学渣竟看不懂答案A,B两数都只含有质因数3和5,它们的最大公约数是75,已知A有12个约数,B有1 2020-06-20 …
如果正数a,b,c,d满足a+b=cd=4,那么()A.ab≤c+d且等号成立时a,b,c,d的取 2020-07-09 …
设a,b,c,为实数,且满足a-b+c0,则下列结论正确的是:A.b²>4acB.b²小于等于4a 2020-07-09 …
对于满足0<b<3a的任意实数a,b,函数f(x)=ax2+bx+c总有两个不同的零点,则a+b- 2020-07-17 …
设a,b是实数,定义@的一种运算如下:a@b=(a+b)2-(a-b)2,则下列结论:①若a@b= 2020-07-21 …
设集合A={x||x-a|<1,x∈R},B={x||x-b|>2,x∈R}.若A⊆B,则实数a, 2020-08-01 …
如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,C是AB的中点,且a、b满足 2020-11-20 …
如图:在数轴上点A表示数a,点B表示数b,点C表示数c,b是最大的负整数,且a、c满足|a+3|+( 2020-11-20 …
一道数学题(请详解)若定义在R上的函数f(x)满足:对任意的X1,X2∈R,有f(X1+X2)=f( 2020-12-08 …