早教吧作业答案频道 -->数学-->
已知数列an满足a1=1,a2=2,an+1=an+an-1/2令bn=an+1-an,证明bn是等比数列n属于N*求an通项公式
题目详情
已知数列an满足a1=1,a2=2,an+1=an+an-1/2
令bn=an+1-an,证明bn是等比数列n属于N*
求an通项公式
令bn=an+1-an,证明bn是等比数列n属于N*
求an通项公式
▼优质解答
答案和解析
a(1)=1,a(2)=2,
a(n+2)=[a(n+1)+a(n)]/2,
a(n+2)-a(n+1)=[a(n)-a(n+1)]/2=(-1/2)[a(n+1)-a(n)],
b(n+1)=a(n+2)-a(n+1)=(-1/2)[a(n+1)-a(n)]=(-1/2)b(n),
{b(n)=a(n+1)-a(n)}是首项为a(2)-a(1)=1,公比为(-1/2)的等比数列.
b(n)=a(n+1)-a(n)=(-1/2)^(n-1),
a(n+1) = a(n) + (-1/2)^(n-1),
(-2)^na(n+1) = (-2)(-2)^(n-1)a(n) - 2,
c(n) = (-2)^(n-1)a(n),
c(n+1)=(-2)^na(n+1)=(-2)(-2)^(n-1)a(n) - 2 = -2c(n)-2,
c(n+1)+2/3 = -2c(n)-2+2/3 = -2c(n) - 4/3 = (-2)[c(n) + 2/3],
{c(n)+2/3}是首项为c(1)+2/3=a(1)+2/3=5/3,公比为(-2)的等比数列.
c(n)+2/3 = (5/3)(-2)^(n-1),
c(n) = (5/3)(-2)^(n-1) - 2/3 = (-2)^(n-1)a(n),
a(n) = 5/3 - (2/3)(-1/2)^(n-1)
a(n+2)=[a(n+1)+a(n)]/2,
a(n+2)-a(n+1)=[a(n)-a(n+1)]/2=(-1/2)[a(n+1)-a(n)],
b(n+1)=a(n+2)-a(n+1)=(-1/2)[a(n+1)-a(n)]=(-1/2)b(n),
{b(n)=a(n+1)-a(n)}是首项为a(2)-a(1)=1,公比为(-1/2)的等比数列.
b(n)=a(n+1)-a(n)=(-1/2)^(n-1),
a(n+1) = a(n) + (-1/2)^(n-1),
(-2)^na(n+1) = (-2)(-2)^(n-1)a(n) - 2,
c(n) = (-2)^(n-1)a(n),
c(n+1)=(-2)^na(n+1)=(-2)(-2)^(n-1)a(n) - 2 = -2c(n)-2,
c(n+1)+2/3 = -2c(n)-2+2/3 = -2c(n) - 4/3 = (-2)[c(n) + 2/3],
{c(n)+2/3}是首项为c(1)+2/3=a(1)+2/3=5/3,公比为(-2)的等比数列.
c(n)+2/3 = (5/3)(-2)^(n-1),
c(n) = (5/3)(-2)^(n-1) - 2/3 = (-2)^(n-1)a(n),
a(n) = 5/3 - (2/3)(-1/2)^(n-1)
看了 已知数列an满足a1=1,a...的网友还看了以下:
一道极限题··急求.在数列{an}中,a2=2,a6=10,且数列{√an-1}为等差数列(那1不 2020-04-27 …
已知数列{an}和{Bn}满足a1=2 an-1=an(an+1-1) bn=an-1 n∈N+已 2020-05-15 …
若数列{an}满足(an+2)/(an+1)+(an+1)/an=k(k为常数),则称数列{an} 2020-05-17 …
n(n》3)边形A1A2A3…An-1An中,∠A1,∠A2的平分线交于点O,∠A3+∠A4+…∠ 2020-07-09 …
已知{an}是等差数列,2a5=a3+a7是否成立?2a5=a1+a9呢?为什么?2an=an-1 2020-07-09 …
若公比为c的等比数列{an}的首项为a1=1且满足an=an-1+an-2/2(1)求c(2若公比 2020-07-30 …
等比数列已知数列{An}的首项a1=2/3,An+1(1在角标位置)=2An/An+1(1是和An 2020-07-30 …
已知等差数列{an}.满足:an+1>an(n∈N*),a1=1,该数列的前三项分别加上1,1,3 2020-07-30 …
高分求解数列问题用递推关系式求解通项公式例如an=an-1+an-2的类型还有就是a高分求解数列问 2020-08-01 …
对于数列{an},定义数列{an+1-an}为数列{an}的“差数列”对于数列{An},定义数列{A 2020-11-18 …