早教吧作业答案频道 -->数学-->
如图,点E在正方形ABCD的对角线AC上,CF⊥BE交BD于点G,F是垂足.求证:四边形ABGE是等腰梯形.
题目详情
如图,点E在正方形ABCD的对角线AC上,CF⊥BE交BD于点G,F是垂足.求证:四边形ABGE是等腰梯形.
▼优质解答
答案和解析
证明:∵四边形ABCD是正方形,
∴AC⊥BD,BO=CO,
∠ABO=∠ABE+∠EBO=45°,
∠BCO=∠BCG+∠GCO=45°,
∵CF⊥BE,
∴∠BEC+∠GCO=90°,
∵AC⊥BD,
∴∠EBO+∠BEC=90°,
∴∠EBO=∠GCO,
∴∠ABE=∠BCG,
在△ABE和△BGC中,
∴△ABE≌△BGC,
∴AE=BG,
∴EO=GO,
∠OEG=∠OAB=45°
∴EG∥AB
∴AE=BG,
∴四边形ABGE是等腰梯形.
∴AC⊥BD,BO=CO,
∠ABO=∠ABE+∠EBO=45°,
∠BCO=∠BCG+∠GCO=45°,
∵CF⊥BE,
∴∠BEC+∠GCO=90°,
∵AC⊥BD,
∴∠EBO+∠BEC=90°,
∴∠EBO=∠GCO,
∴∠ABE=∠BCG,
在△ABE和△BGC中,
|
∴△ABE≌△BGC,
∴AE=BG,
∴EO=GO,
∠OEG=∠OAB=45°
∴EG∥AB
∴AE=BG,
∴四边形ABGE是等腰梯形.
看了 如图,点E在正方形ABCD的...的网友还看了以下:
A为三阶矩阵,E为三阶单位矩阵A的三个特征值分别为1,2,-3,则下列矩阵中是可逆矩阵的是:A.A 2020-05-15 …
设a>0,f(x)=e^x/a+a/e^x是R上的偶函数,求a值.∵f(x)=e^x/a+a/e^ 2020-05-17 …
A的平方+B的平方=C的平方+D的平方+E的平方=365其中A和B是连续的自然数,C,D,E也是连 2020-05-19 …
设有关系模式R(A,B,C,D,E,F),若有如下的函数依赖集F={A→B,(C,A)→D, (E, 2020-05-24 …
e^a*e^b等于e^ab吗?e^a-e^b=e^b*(e^(a/b)-1)对吗?那e^a/e^b 2020-06-10 …
main(){unionEXAMPLE{struct{intx,y;}in;inta,b;}e;e 2020-06-12 …
设A=(101;020;-101)求满足方程AB+E=A^2+B的矩阵B用AB+E=A^2+B(A 2020-06-18 …
请教一线性代数题,这题应该选哪个?设A与B是两个相似n阶矩阵,则下列说法错误的是A.|A|=|B| 2020-06-18 …
设A,B均为n阶方阵,E为n阶单位阵,且(A-E)(B-E)=0A=E或B=E|A-E|=0或|B 2020-06-18 …
设M是焦距为2的椭圆E:x2a2+y2b2=1(a>b>0)上一点,A、B是椭圆E的左、右顶点,直 2020-06-21 …